Skip to main content

Inorganic and Organic Pollutants in Baltic Sea Region and Feasible Circular Economy Perspectives for Waste Management: A Review

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

The Baltic Sea is the world’s longest inland brackish, nontidal, relatively shallow, and semi-enclosed sea. The drainage area of the Baltic Sea is densely populated, heavily industrialized, and intensively farmed. Pollution in the Baltic Sea due to anthropogenic activities such as sediment dredging, discharge from municipal and industrial wastewater treatment plants, waste landfills and warehouses for hazardous substances, and accidental oil spills is a pervasive problem of concern. Baltic Marine Environment Protection Commission – Helsinki Commission (HELCOM) was established about four decades ago to protect the marine environment of the Baltic Sea from all sources of pollution through intergovernmental cooperation. The Baltic Sea experiences pollution due to eutrophication (nitrogen and phosphorus), metals (such as lead, cadmium, and mercury), and organic pollutants (such as organochlorine pesticides and polycyclic aromatic hydrocarbons). These pollutants deteriorate the water quality, affect the aquatic life, and may inculcate into the human food chain. Beach wracks accumulated at the Baltic Sea shores are an ecological asset which is also utilized for the production of biochar and biogas, compost, etc. The consideration of beach wracks as an ecological asset or a nuisance is ambiguous. This study recommends strict enforcement of existing mitigation strategies and the formulation of new policies to effectively control pollution in the Baltic Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • S. Achinas, V. Achinas, G.J.W. Euverink, A technological overview of biogas production from biowaste. Engineering 3(3), 299–307 (2017)

    Google Scholar 

  • E. Agrafioti, G. Bouras, D. Kalderis, et al., Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 101, 72–78 (2013)

    CAS  Google Scholar 

  • A. Apler, S. Josefsson, Swedish status and trend monitoring programme chemical contamination in offshore sediments 2003–2014. SGU-rapport 2016, 04 (2016)

    Google Scholar 

  • R. Bindler, I. Renberg, J. Rydberg, et al., Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy. Environ. Pollut. 157(7), 2132–2141 (2009)

    CAS  Google Scholar 

  • C. Bostrom, S.P. Baden, D. Krause-Jensen, The seagrasses of Scandinavia and the Baltic Sea, in World Atlas of Seagrasses, ed. by E. P. Green, F. T. Short, (University of California Press, Berkeley, 2003), pp. 27–37

    Google Scholar 

  • E. Broman, N.H. Motwani, S. Bonaglia, et al., Denitrification responses to increasing cadmium exposure in Baltic Sea sediments. Aquat. Toxicol. 217, 105328 (2019)

    CAS  Google Scholar 

  • K. Bucholc, M. Szymczak-Żyła, L. Lubecki, et al., Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci. Total Environ. 473, 298–307 (2014)

    Google Scholar 

  • J. Carstensen, D.J. Conley, E. Almroth-Rosell, et al., Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio 49, 1194–1210 (2020)

    CAS  Google Scholar 

  • T.H. Christensen, P. Kjeldsen, Basic biochemical processes in landfills, in Sanitary Landfilling: Process, Technology and Environmental Impact, (Academic, Blakey, 1989)

    Google Scholar 

  • K. Cybulska, E. Łońska, J. Fabisiak, Bacterial benthic community composition in the Baltic Sea in selected chemical and conventional weapons dump sites affected by munition corrosion. Sci. Total Environ. 709(20), 136112 (2020)

    CAS  Google Scholar 

  • G. Enaime, A. Baçaoui, A. Yaacoubi, et al., Biochar for wastewater treatment-conversion technologies and applications. Appl. Sci. 10(10), 3492 (2020)

    CAS  Google Scholar 

  • EU MSFD JRC, Marine Strategy Framework Directive. Task Group 5 Report. Eutrophication (2010, p. 49).

    Google Scholar 

  • J. Fabisiak, Zagrożenia ekologiczne Bałtyku związane z zanieczyszczeniami chemicznymi-węglowodory. Zeszyty Naukowe AMW ROK XLIX 3(174), 7–28 (2008)

    Google Scholar 

  • L. Ferrans, Y. Jani, J. Burlakovs, et al., Chemical speciation of metals from marine sediments: Assessment of potential pollution risk while dredging, a case study in southern Sweden. Chemosphere 263, 128105 (2020)

    Google Scholar 

  • A. Ficek, J. Czupioł, PCB-szkodliwe ksenobiotyki w środowisku. Środowisko 5, 28–31 (2018)

    Google Scholar 

  • R. Gokulan, G. Ganesh Prabhu, J. Jegan, A novel sorbent Ulva lactuca-derived biochar for remediation of Remazol Brilliant Orange 3R in packed column. Water Environ. Res. 91(7), 642–649 (2019)

    CAS  Google Scholar 

  • I. Haller, N. Stybel, S. Schumacher, et al., Will beaches be enough? Future changes for coastal tourism at the German Baltic Sea. J. Coast. Res. 61, 70–80 (2011)

    Google Scholar 

  • A.S. Heiskanen, E. Bonsdorff, M. Joas, Baltic Sea: a recovering future from decades of eutrophication, in Coasts and Estuaries, Elsevier, Amsterdam, Netherlands, 343–362 (2019)

    Google Scholar 

  • HELCOM, Biodiversity in the Baltic Sea – An integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea. Baltic Sea Env. Proc. 116B, 192 (2009) Helsinki Commission, Helsinki Finland

    Google Scholar 

  • HELCOM (2017) First version of the ‘State of the Baltic Sea’ report – June 2017 – To be updated in 2018

    Google Scholar 

  • HELCOM, State of the Baltic Sea – Second HELCOM holistic assessment 2011–2016. Balt. Sea Environ. Proc. 155, 4–7 (2018)

    Google Scholar 

  • F.S. Higashikawa, R.F. Conz, M. Colzato, et al., Effects of feedstock type and slow pyrolysis temperature in the production of biochars on the removal of cadmium and nickel from water. J. Clean. Prod. 137, 965–972 (2016)

    CAS  Google Scholar 

  • A. Hussain, J. Maitra, K.A. Khan, Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater. Appl Water Sci 7(8), 4525–4537 (2017)

    CAS  Google Scholar 

  • L. Järv, H. Kiviranta, J. Koponen, et al., Persistent organic pollutants in selected fishes of the Gulf of Finland. J. Mar. Syst. 171, 129–133 (2017)

    Google Scholar 

  • J. Johansson, E. Undeman, Perfluorooctane sulfonate (PFOS) and other perfluorinated alkyl substances (PFASs) in the Baltic Sea – Sources, transport routes and trends. Helcom Baltic Sea Env. Proc 173, 1–28 (2020)

    Google Scholar 

  • M. Kahru, R. Elmgren, Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11, 3619–3633 (2016)

    Google Scholar 

  • J. Kotta, M. Futter, A. Kaasik, et al., Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Sci. Total Environ. 709, 136144 (2020)

    CAS  Google Scholar 

  • A. Kupczyk, K. Kołecka, M. Gajewska, Solving the beach wrack problems by on-site treatment with reed beds towards fertilizer amendments. J. Ecol. Eng. 20(8), 252–261 (2019)

    Google Scholar 

  • M. Leivuori, K. Joksas, Z. Seisuma, et al., Distribution of heavy metals in sediments of the Gulf of Riga, Baltic Sea. Boreal Environ. Res. 5, 165–185 (2000)

    CAS  Google Scholar 

  • A. Lemley Daniel, B. Adams Janine, Eutrophication, in Encyclopedia of Ecology, ed. by B. Fath, 2nd edn., Elsevier: Amsterdam, Netherlands, ISBN 9780444641304 86–90 (2019)

    Google Scholar 

  • P.I. Macreadie, S.M. Trevathan-Tackett, J.A. Baldock, et al., Converting beach-cast seagrass wrack into biochar: A climate-friendly solution to a coastal problem. Sci. Total Environ. 574, 90–94 (2017)

    CAS  Google Scholar 

  • A. Mandal, N. Singh, Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems. Int. J. Hyg. Environ. Health 220(3), 637–645 (2017)

    CAS  Google Scholar 

  • S. Manzetti, Heavy metal pollution in the Baltic Sea, from the North European coast to the Baltic states, Finland and the Swedish coastline to Norway. Fjordforsk AS, Technical Reports 6:8 1–90 (2020).

    Google Scholar 

  • M. McLachlan, E. Undeman, Dioxins and PCBs in the Baltic Sea. Helcom Baltic Sea Env. Proc, 171 (2020).

    Google Scholar 

  • J. Milke, M. Gałczyńska, J. Wróbel, The importance of biological and ecological properties of Phragmites Australis (Cav.) Trin. Ex Steud., in phytoremediation of aquatic ecosystems—the review. Water 12(6), 1770 (2020)

    CAS  Google Scholar 

  • M. Minta, S. Stypuła-Trębas, Wykrywanie i ocena aktywności związków hormonalnie aktywnych. Med Wet 68, 25–29 (2012)

    Google Scholar 

  • G. Misson, M. Mainardis, G. Incerti, et al., Preliminary evaluation of potential methane production from anaerobic digestion of beach-cast seagrass wrack: The case study of high-adriatic coast. J. Clean. Prod. 254, 120131 (2020)

    CAS  Google Scholar 

  • C.J. Murray, B. Müller-Karulis, J. Carstensen, et al., Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2 (2019)

    Google Scholar 

  • R. Olędzki, Substancje niebezpieczne w żywności wykazujące działanie rakotwórcze I mutagenne, in Zagrożenia i problemy cywilizacyjne XXI w. – przegląd i badania, ed. by M. Maciąg, K. Maciąg. Wydawnictwo Naukowe TYGIEL sp. z o.o. 30–48. (2017). ISBN 9788365598721 167

    Google Scholar 

  • J. Piskorska-Pliszczyńska, P. Struciński, S. Mikołajczyk, et al., Dioxins, furans, and polychlorinated biphenyls in hen eggs – a new source of hazard for consumers? Bull. Vet. Inst. Pulawy 59, 519–526 (2015)

    Google Scholar 

  • T. Porseryd, K. Volkova, N. Reyhanian Caspillo, et al., Persistent effects of developmental exposure to 17α-ethinylestradiol on the zebrafish (Danio rerio) brain transcriptome and behavior. Front. Behav. Neurosci. 11, 69 (2017)

    Google Scholar 

  • A. Räike, A. Taskinen, S. Knuuttila, Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite water protection measures. Ambio 49(2), 460–474 (2020)

    Google Scholar 

  • V. Rana, Sustainable treatment of landfill leachate using constructed wetlands: an eco-friendly approach, in Recent advancements in bioremediation of metal contaminants, (IGI Global, 2020), pp. 237–255. https://doi.org/10.4018/978-1-7998-4888-2.ch013

    Chapter  Google Scholar 

  • V. Rana, S.K. Maiti, S. Jagadevan, Ecological risk assessment of metals contamination in the sediments of natural urban wetlands in dry tropical climate. Bull. Environ. Contam. Toxicol. 97, 407–412 (2016)

    CAS  Google Scholar 

  • N. Remeikaitė-Nikienė, G. Garnaga-Budrė, G. Lujanienė, et al., Distribution of metals and extent of contamination in sediments from the south-eastern Baltic Sea (Lithuanian zone). Oceanologia 60, 193–206 (2018)

    Google Scholar 

  • R.M. Renner, G.P. Glasby, P. Szefer, Endmember analysis of heavy-metal pollution in surficial sediments from the Gulf of Gdansk and the southern Baltic Sea off Poland. Appl. Geochem. 13(3), 313–318 (1998)

    CAS  Google Scholar 

  • F. Romagnoli, L. Pastare, A. Sabūnas, et al., Effects of pre-treatment on Biochemical Methane Potential (BMP) testing using Baltic Sea Fucus vesiculosus feedstock. Biomass Bioenergy 105, 23–31 (2017)

    CAS  Google Scholar 

  • A.N. Sandman, J. Näslund, I. Gren, et al., Effects of an invasive polychaete on benthic phosphorus cycling at sea basin scale: An ecosystem disservice. Ambio 47, 884–892 (2018)

    CAS  Google Scholar 

  • S. Shahabi-Ghahfarokhi, S. Josefsson, A. Apler, et al., Baltic Sea sediments record anthropogenic loads of Cd, Pb, and Zn. Environ. Sci. Pollut. Res., 28, 6162–6175 (2021)

    Google Scholar 

  • E. Smet, H. Vanlangenhove, I. Debo, The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste. Atmos. Environ. 33(8), 1295–1303 (1999)

    CAS  Google Scholar 

  • C. Sonne, U. Siebert, K. Gonnsen, et al., Health effects from contaminant exposure in Baltic Sea birds and marine mammals: a review. Environ. Int. 139, 105725 (2020)

    CAS  Google Scholar 

  • M. Staniszewska, H. Boniecka, Managing dredged material in the coastal zone of the Baltic Sea. Environ. Monit. Assess. 189, 46 (2017)

    Google Scholar 

  • M. Stec, E. Kurzeja, A. Kościołek, et al., Zagrożenia wynikające z narażenia na dioksyny i dioksynopodobne polichlorowane bifenyle. Problemy Higieny i Epidemiologii 93(4), 639–646 (2012)

    Google Scholar 

  • Y. Tang, M.S. Alam, K.O. Konhauser, et al., Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. J. Clean. Prod. 209, 927–936 (2019)

    CAS  Google Scholar 

  • The Marine Strategy Framework Directive, European Parliament and Council Directive 2008/56/EG of 17 June 2008 (2008).

    Google Scholar 

  • E. Undeman, Diclofenac in the Baltic Sea – Sources, transport routes and trends. Helcom Baltic Sea Env. Proc. 170, 1–24 (2020)

    Google Scholar 

  • E. Undeman, J. Johansson, Polybrominated diphenyl ethers (PBDEs) in the Baltic Sea – sources, transport routes and trends. Helcom Baltic Sea Env. Proc. 172 (2020).

    Google Scholar 

  • H. Vallius, Quality of the surface sediments of the northern coast of the Gulf of Finland, Baltic Sea. Mar. Pollut. Bull. 99, 250–255 (2015)

    CAS  Google Scholar 

  • B. Wang, J. Lehmann, K. Hanley, et al., Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times. RSC Adv. 6(48), 41907–41913 (2016)

    CAS  Google Scholar 

  • A. Wathukarage, I. Herath, M.C.M. Iqbal, et al., Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environ. Geochem. Health 41(4), 1647–1661 (2019)

    CAS  Google Scholar 

  • D. Wei, B. Li, H. Huang, et al., Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs. Chemosphere 197, 165–180 (2018)

    CAS  Google Scholar 

  • M.A. Włodarczyk-Makuła, E. Wiśniowska, Monografia pod red. J. Bień M, Gromiec L, Pawłowski Ocena gospodarki ściekowo-osadowej w Polsce. Raport. Wydawnictwo PAN, Monografie Komitetu Inżynierii Środowiska, Lublin 166, 87–105 (2020).

    Google Scholar 

  • E. Wojciechowska, N. Nawrot, K. Matej-Łukowicz, et al., Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Supply 19(3), 986–994 (2019)

    CAS  Google Scholar 

  • Y.N. Wu, M. Mattsson, M.W. Ding, et al., Effects of different pre-treatments on improving biogas production of macroalgae Fucus vesiculosus and Fucus serratus in Baltic Sea. Energy Fuel 33(3), 2278–2284 (2019)

    CAS  Google Scholar 

  • W. Xiang, X. Zhang, J. Chen, et al., Biochar technology in wastewater treatment: a critical review. Chemosphere 252, 126539 (2020)

    CAS  Google Scholar 

  • Y. Yao, Y. Zhang, B. Gao, et al., Removal of sulfamethoxazole (SMX) and sulfapyridine (SPY) from aqueous solutions by biochars derived from anaerobically digested bagasse. Environ. Sci. Pollut. Res. 25(26), 25659–25667 (2018)

    CAS  Google Scholar 

  • A. Zaborska, A. Kosakowska, J. Bełdowski, et al., The distribution of heavy metals and 137Cs in the central part of the Polish maritime zone (Baltic Sea) – the area selected for wind farm acquisition. Estuar. Coast. Shelf Sci. 198, 471–481 (2017)

    CAS  Google Scholar 

  • A. Zaborska, G. Siedlewicz, B. Szymczycha, et al., Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea)–loads and distribution revisited. Mar. Pollut. Bull. 139, 238–255 (2019)

    CAS  Google Scholar 

  • M. Zhang, B. Gao, J. Fang, et al., Self-assembly of needle-like layered double hydroxide (LDH) nanocrystals on hydrochar: characterization and phosphate removal ability. RSC Adv. 4(53), 28171–28175 (2014)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rana, V., Milke, J., Gałczyńska, M. (2022). Inorganic and Organic Pollutants in Baltic Sea Region and Feasible Circular Economy Perspectives for Waste Management: A Review. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_80

Download citation

Publish with us

Policies and ethics