Skip to main content

Phytoremediation: A Cost-Effective Tool for Solid Waste Management

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

Pollution of the natural environment by heavy metals (Mg, Fe, Mn, Zn, Cu, Mo, and Ni) is a universal problem, because these metals are indestructible and most of them have toxic effects on living organisms when permissible concentration levels are exceeded, and many of them are toxic even at very low concentrations. Heavy metals make a significant contribution to environmental pollution as a result of human activities such as mining, smelting, electroplating, energy and fuel production, power transmission, intensive agriculture, municipal wastes, sludge dumping, and military operations. Several methods already used to clean up the environment from these kinds of contaminants, but most of them are costly and difficult to get optimum results. Currently, phytoremediation is an effective and affordable technological solution used to extract or remove inactive metals and metal pollutants from contaminated soil and water. This technology is environmentally friendly and potentially cost effective. Plants absorb heavy metals through the root from the soil and through overground vegetative organs from the atmosphere. Most heavy metals accumulate in the top soil and in the long term, their contaminations increase in the soil as a result of an increased absorption and accumulation in plants. The quantity or level of heavy metals absorption in plants depends not only on the concentration levels of the metals in the physical and chemical composition of the soil but also varies in different parts of the plant. This chapter aims to compile some information about heavy metal sources, effects, and their treatment, phytoremediation technology through specially horticultural crops, including the heavy metal uptake mechanisms, and several research studies associated about the topics. The advantages of this kind of technology for reducing them affecting the uptake mechanisms in phytoremediation technology as well as the factors affecting the uptake mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Abdul Waheed, S. Awang, P. Sarva, The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN J. Sci. Technol. 4(12), 722–731 (2014)

    Google Scholar 

  • N. Adams, D. Carroll, K. Madalinski, S. Rock, T. Wilson, Introduction to Phytoremediation (National Risk Management Research Laboratory Office of Research and Development U.S. Environmental Protection Agency, Cincinnati, 2000), pp. 1–104

    Google Scholar 

  • T. Adler, Botanical Cleanup Crews. Sci. News. 150, 42–43 (1996)

    Google Scholar 

  • P. Agamuthu, Y.S. Tan, S.H. Fauziah, Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environmental Sciences 18, 694–702 (2013)

    Google Scholar 

  • A.J.M. Baker, R.D. Reeves, S.P. Mc Grath, In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants: A feasibility study, in In Situ Bioreclamation, ed. by R. L. Hinchee, R. F. Olfenbuttel, (Butterworth–Heinemann, Boston, 1991), pp. 600–605

    Google Scholar 

  • A.J.M. Baker, S.P. Mc Grath, R.D. Reeves, J.A.C. Smith, Metal hyper accumulator plants: a review of the ecology and physiology of a biological resource for phytoremdiation of metal polluted soils. In: Terry, N., Banueloes, G. (Eds.), Phytoremediation of contaminated soil and water. Baca Raton: Lewise publishers: 2000, 85–107 (2000)

    Google Scholar 

  • V. Banasova, O. Horak, Heavy metal content in Thlaspi caerulescens growing on metalliferous and non-metalliferous soils in Central Slovakia. Int. J. Environ. Pollut. 33, 133–145 (2008)

    CAS  Google Scholar 

  • G.S. Banuelos, D.W. Meek, Accumulation of selenium in plants grown on selenium treated soil. Journal of Environmental Quality 19, 772–777 (1990)

    Google Scholar 

  • G.S. Bañuelos, H.A. Ajaw, B. Mackey, L. Wu, C. Cook, S. Akohoue, S. Zambruzuski, Evaluation of different plant species used for phytoremediation of high soil selenium. J. Environ. Qual. 26(3), 639–646 (1997)

    Google Scholar 

  • W.R. Beerti, S.D. Cunningham, in Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, ed. by I. Raskin, (Wiley-Interscience, Wiley, New York, 2000), pp. 71–88

    Google Scholar 

  • O. Bordjiba, R. Steiman, M. Kadri, A. Semadi, P. Guiraud, Herbicides from liquid media by fungi isolated from a contaminated soil. J. Environ. Qual. 30(2), 418–426 (2001)

    CAS  Google Scholar 

  • S. Bose, J. Vedamati, V. Rai, A.L. Ramanathan, Metal uptake and transport by Tyahaangustata L. grown on metal contaminated waste amended soil: An implication of phytoremediation. Geoderma 145, 136–142 (2008)

    CAS  Google Scholar 

  • J.G. Burken, J.L. Schnoor, Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int. J. Phytoremediation 1(2), 139–151 (1999)

    CAS  Google Scholar 

  • C.S.C. Calheiros, A.O.S.S. Rangel, P.M.L. Castro, The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch. Environ. Contam. Toxicol. 55, 404–414 (2008)

    CAS  Google Scholar 

  • R.L. Chaney, Plant uptake of inorganic waste constituents, in Land Treatment of Hazardous Wastes, ed. by J. F. Parr, P. B. Marsh, J. M. Kla, (Noyes Data Corp, Park Ridge, 1983), pp. 50–76

    Google Scholar 

  • C. Cristóbal et al., Potential use of water hyacinth (Eichhornia crassipes) in Xochimilco for metal phytoremediation. Agrociencia 46(6), 609–620 (2012)

    Google Scholar 

  • J.L. Crompton, Emoirical Evidence of the contributions of park and convservationjands to Environmental sustainability: the key to Repositioning the parks. Field, World Lesiure N0.3 (2008)

    Google Scholar 

  • L.T. Danh, P. Troung, R. Mammucari, T. Tran, N. Foster, Vetiver grass, Vetiver zizanoides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation 11, 664–691 (2009)

    Google Scholar 

  • M. del Rio, R. Font, J. Fernández-Martinez, J. Domínguez, A. de Haro, Field trials of Brassica carinata and Brassica juncea in polluted soils of the Guadiamar river area. Fresenius Environ. Bull. 9(5/6), 328–332 (2000)

    Google Scholar 

  • C.R. Ernst, K. Guillick, Nixon, Protecting the source: Conserving forests to protect water, in The Economic Benefits of Land Conservation, ed. by C. T. F. Deburn, (San Francisco Trust Land Public, 2007), pp. 24–27

    Google Scholar 

  • P.E. Flathman, G.R. Lanza, Phyteoremediation: Current views on an emerging green technology. Soil Sediment Contam. Int. J. 71, 415–432 (1998)

    Google Scholar 

  • M. Ghosh, S.P. Singh, A review on phytoremediation of heavy metals and utilization of its’ byproducts. Appl. Ecol. Environ. Res. 3(1), 1–18 (2005)

    Google Scholar 

  • P. Gong, B.M. Wilke, S. Fleischmann, Soil-based phytotoxicity of TNT (2,4,6-trinitrotoluene) to terrestrial higher plants. Arch. Environ. Contam. Toxicol. 36(2), 152–157 (1999)

    CAS  Google Scholar 

  • U.C. Gupta, S.C. Gupta, Trace element toxicity relationships implications for management. Commun. Soil Sci. Plant Anal. 29, 1491–1522 (1998)

    CAS  Google Scholar 

  • D. Hansen, P.J. Duda, A. Zayed, N. Terry, Selenium removal by constructed wetlands: Role of biological volatilization. Environ. Sci. Technol. 32(5), 591–597 (1998)

    CAS  Google Scholar 

  • P.J. Hu, R.L. Qiu, P. Senthilkumar, D. Jiang, Z.W. Chen, Y.T. Tang, F.J. Liu, Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ. Exp. Bot. 66, 317–325 (2009)

    CAS  Google Scholar 

  • J.W. Huang, M.J. Blaylock, Y. Kapulnik, B.D. Ensley, Phytoremediation of uranium contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 32, 2004–2008 (1998)

    CAS  Google Scholar 

  • M. Israr, S.V. Sahi, J. Jain, Cadmium accumulation and antioxidative responses in the Sesbania drummondii callus. Arch. Environ. Contam. Toxicol. 50, 121–127 (2006)

    CAS  Google Scholar 

  • X.F. Jin, D. Liu, Effects of zinc on root morphology and antioxidant adaptations of cadmium-treated Sedum alfredii. J. Plant Nutr. 32, 1642–1656 (2009)

    CAS  Google Scholar 

  • W. Kai, H. Huang, Z. Zhu, L. Tingqiang, H. Zhenli, X. Yang, A. Alva, Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum Alfredii with ryegrass (Lolium Perenne) or Castor (Ricinus Communis). Int. J. Phytoremediation 15(3), 283–298 (2013). https://doi.org/10.1080/15226514.2012.694501

    Article  CAS  Google Scholar 

  • T. Komives, A.A.A. Aioub, G. Gullner, Effect of mercuric chloride on the glutathione tranferase enzyme activity in corn plants. Cereal Research Communications 22, 99–103 (1994)

    Google Scholar 

  • U. Kramer, Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 61, 517–534 (2010)

    Google Scholar 

  • G.R. Lanza, P.E. Flathman, Phytoremediation Technologies: Hazardous and Radioactive Water Treatment Technologies Handbook (Chang Ho, Oh., Baca Raton) (CRC Press, 2001), pp. 5.6-1–5.6-13

    Google Scholar 

  • L.Q. Ma, K.M. Komar, C. Tu, W. Zhang, Y. Cai, E.D. Kennelley, A fern that hyperaccumulates arsenic. Nature 409, 579–579 (2001)

    CAS  Google Scholar 

  • A. Mandal, T.J. Purakayastha, A.K. Patra, S.K. Sanyal, Phytoremediation of arsenic contaminated soil by Pteris vittata. Int. J. Phytoremediation 14(10), 978–985 (2012)

    CAS  Google Scholar 

  • G. Maria, L. Tommy, B. Björn, Efficient phytoextraction of metals by Salix in field-influence of biomass and removal of leaf litter, in COST 837 WG2+4 Meeting in Stockholm, Sweden: Workshop “Phytoremediation of Toxic Metals” June, 12–15, 2003 (2003)

    Google Scholar 

  • S.C. Mc Cutcheon, J.L. Schnoor, Phytoremediation (Wiley, 2003), p. 898

    Google Scholar 

  • M. Mohanty, H.K. Patra, Phytoremediation potential of Paragrass – An in situ approach for chromium contaminated soil. Int. J. Phytoremediation 14(8), 796–805 (2012). https://doi.org/10.1080/15226514.2011.619595

    Article  CAS  Google Scholar 

  • R. Mouhamad, I. Ghanem, M.A. Orfi, K. Ibrahim, N. Ali, A. Al-Daoude, Phytoremediation of trichloroethylene and dichlorodiphenyltrichloroethane—Polluted water using transgenic Sesbania grandiflora and Arabidopsis Thaliana plants harboring Rabbit Cytochrome P450 2E1. Int. J. Phytoremediation 14(7), 656–668 (2012)

    CAS  Google Scholar 

  • B. Mueller, S. Rock, Gowswami Dib, D. Ensley, Phytoremediation Decision Tree- Prepared by Interstate Technology and Regulatory Cooperation Work Group (1999), pp. 1–36

    Google Scholar 

  • B. Nedjimi, Y. Daoud, Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol. Distrib. Funct. Ecol. Plants 204, 316–324 (2009)

    Google Scholar 

  • A.K. Panda, Rhizofiltration of Zn and Ni. Indian J. Environ. Health 38, 51–53 (1996)

    CAS  Google Scholar 

  • F.F.F. Pedro, A. Agostinho, T. Jorge, Phytostabilisation of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. are metallothioneins involved? 57, 254–260 (2012)

    Google Scholar 

  • A.J. Pollard, H.L. Stewart, C.B. Roberson, Manganese hyperaccumulation in Phytolacca americana from the southeastern United States. Northeast. Nat. 16, 155–162 (2009)

    Google Scholar 

  • M. Rajkumar, S. Sandhya, M.N.V. Prasad, H. Freitas, Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30(6), 1562–1574 (2012)

    CAS  Google Scholar 

  • A.V. Ramanjaneyulu, G. Giri, Phytoremdiation-a biological decontamination method. Kurukshetra 53(12), 45–48 (2004)

    Google Scholar 

  • R.D. Reeves, A.J.M. Baker, In: Raskin, I., Ensley, B.D., (Eds), Phytorediation of toxic metals using plants to clean up the environment, Wiley, New York, 193–229 (2000)

    Google Scholar 

  • D.E. Salt, M. Blaylock, N.P.B.A. Kumar, V. Dushenkov, B.D. Ensley, I. Raskin, Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13, 468–474 (1995)

    CAS  Google Scholar 

  • S. Saraswat, J.P.N. Rai, Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem. Ecol. 25, 1–11 (2009)

    CAS  Google Scholar 

  • H. Sarma, Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4, 118–138 (2011). https://doi.org/10.3923/jest.2011.118.138

    Article  CAS  Google Scholar 

  • J.L Schnnor, Technology evaluation report. Phytoremediation of soil and groundwater GWRTAC series GWRTAC series TE-02-01 (2002)

    Google Scholar 

  • P.K. Singh, J.K. Mahapatra, in The Changing Scenario in Plant Species, ed. by V. S. Jaiswal et al., (Allied Publishers, 2000), pp. 402–422

    Google Scholar 

  • G. Singh, M. Bhati, T. Rathod, Use of tree seedlings for the phytoremediation of a municipal effluent used in dry area of north- western India: Plant growth and nutrient uptake. Ecol. Eng. 36, 1299–1306 (2010)

    Google Scholar 

  • A. Sivaci, E. Elmas, F. Gumu, E.R. Sivaci, Removal of cadmium by Myriophyllum heterophyllum and Potamogeton crispus and its effect on pigments and total phenolic compounds. Arch. Environ. Contam. Toxicol. 54, 612–618 (2008)

    CAS  Google Scholar 

  • R. Sun, C. Jin, Q. Zhou, Characteristics of cadmium accumulation and tolerance in Rorippa globosa, a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regul. 61, 67–74 (2010)

    CAS  Google Scholar 

  • R. Unterbrunner, M. Pushenreiter, P. Sommer, G. Wishammer, P. Tlustos, M. Zupan, W. Wenzel, Heavy metal accumulation in tress growing on comtaminated soil in central Europe. Environ. Pollut. 148, 107–114 (2007)

    CAS  Google Scholar 

  • USDA Forest Service, Water and the Forest Service (FS- 660, Washington, DC, 2000), p. 26

    Google Scholar 

  • K. Vogel-Mikus, I. Arcon, A. Kodre, Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331, 439–451 (2010)

    CAS  Google Scholar 

  • Weeradej Meeinkuirt, Prayad Pokethitiyook, Maleeya Kruatrachue, Phanwimol Tanhan and Rattanawat Chaiyarat, Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. International Journal of Phytoremediation 14(9), 925–938 (2012) https://doi.org/10.1080/15226514.2011.636403

  • L. Wei, C. Luo, X. Li, Z. Shen, Copper accumulation and tolerance in Chrysanthemum coronarium and Sorghum sudanense. Arch. Environ. Contam. Toxicol. 55, 238–246 (2008)

    CAS  Google Scholar 

  • W.W. Wenzel, E. Lombi, D. Adriano, Biogeochemical processes in the rhizosphere: Role in phytoremediation of metal-polluted soils, in Heavy Metal Stress in Plants – From Molecules to Ecosystems, ed. by N. Prasad, J. Hagemeyer, (Springer, Heidelberg, 1999), pp. 273–303

    Google Scholar 

  • J. Yang, J. Mc Bride, J. Zhou, Z. Sun, The urban forest in Beijing and its role in air pollution reduction. Urban For. Urban Green. 3, 65–78 (2005)

    Google Scholar 

  • X. Zeng, L.Q. Ma, R. Qiu, Y. Tang, Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ. Exp. Bot. 66, 242–248 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ghosh, A., Singh, V.K., Dey, K., Patel, M., Pal, A. (2022). Phytoremediation: A Cost-Effective Tool for Solid Waste Management. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_47

Download citation

Publish with us

Policies and ethics