Skip to main content

Utilization of Biogas from Solid Waste in the Production of Biomethane and Its Use as Biofuel in the Transport Sector

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

The accelerated increase in the production of solid waste has been the object of worldwide concern. However, the adequate treatment of the organic portion of these residues by anaerobic digestion makes it possible to produce renewable energy sources, such as biogas, biomethane, and electrical energy, and to generate digestate. That said this work aims to analyze the use of biogas from solid waste in the production of biomethane and its use in the transport sector. Recently, options have appeared in the market for heavy vehicles powered by biomethane, which would result in a significant contribution to the battle against the emission of greenhouse gases and the dependence of the transport sector in fossil sources. It appears that, in addition to the diversification of transport fuel supply, the use of biomethane to replace diesel contributes to the reduction of greenhouse gases and other pollutants that harm the atmosphere, reducing emissions of these gases by up to 300%. The European biomethane market holds 90% of the world supply, and given the feasibility of using biomethane in the heavy transport sector, this market has been growing significantly since 2000. However, even though it is an economically viable dynamic, so that the expansion of the use of biomethane as a vehicle biofuel is made possible, the existence of a wide consumer and producer market is necessary, capable of allowing the use of several fuelling stations, providing an adequate structure for the consolidation of its use in place of diesel in the transport sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • F. Ardolino, F. Parrillo, U. Arena, Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod. 174, 462–476 (2018)

    Article  CAS  Google Scholar 

  • N.I.H.A. Aziz, M.M. Hanafiah, Life cycle analysis of biogas production from anaerobic digestion of palm oil mill efluente. Renew. Energy 145, 847–857 (2020)

    Article  CAS  Google Scholar 

  • B.H.L. Batalha, Septic Tank (CETESB, Sao Paulo, 1989)

    Google Scholar 

  • U. Becher, Brasil. Biomethane as a Vehicle Fuel – Pro Biogás (Ministry of Cities, Brasília, 2016)

    Google Scholar 

  • C. Bley Jr, Biogas: Invisible Energy, 2nd edn. Ver. ampl. (CIBiogas/Itaipu Binacional, Sao Paulo/Foz do Iguaçu, 2015)

    Google Scholar 

  • M.N.P. Camacho, R. Curry, T. Cromie, Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels. Waste Manag. 95, 90–101 (2019)

    Article  Google Scholar 

  • A.C. Campos, L. Epaminondas, Petroleum and Derivatives (JR Technical Publisher, Rio de Janeiro, 1989)

    Google Scholar 

  • D.M. Cancelli, N.L. Dias, Brevê: an objective approach to calculate emission rates for the Brazilian vehicle fleet characteristics. Eng. Sanit. Ambient. 1, 13–20 (2014)

    Article  Google Scholar 

  • R. Cecchini, G. Pelosi, Alessandro volta and his battery. IEEE Antennas Propag. Mag. 34(2), 30–37 (1992)

    Google Scholar 

  • S.T. Coelho et al., Production Techniques and Use of Biogas and Biomethane (Institute of Energy and Environment of the University of Sao Paulo, São Paulo, 2020)

    Google Scholar 

  • A. Coldebella, Feasibility of using biogas from cattle and pig farming for electricity generation and irrigation in rural properties. Dissertation (Master – Graduate in Agricultural Engineering) State University of Western Paraná, Cascavel, 2006, p. 58f

    Google Scholar 

  • R.-G. Cong, D. Caro, M. Thomsen, Is it beneficial to use biogas in the Danish transport sector? – an environmental-economic analysis. J. Clean. Prod. 165, 1025–1035 (2017)

    Article  CAS  Google Scholar 

  • J.P. Cosenza, E.M. Andrade, G.M. Assunção, A circular economy as an alternative for Brazil’s sustainable growth: analysis of the National Solid Waste Policy. J. Environ. Manag. Sustain 9(1), 1–28 (2020)

    Google Scholar 

  • D.F. Costa, Geração de energia elétrica a partir de biogás de tratamento de esgoto (São Paulo, 2002)

    Google Scholar 

  • O. Dada, C. Mbohwa, Energy from waste: a possible way of meeting goal 7 of the sustainable development goals. Mater. Today Proc. 5(4), 10577–10584 (2018)

    Google Scholar 

  • G.F. Dias, Environmental Education and Management (Global Editora e Distribuidora Ltda, 2015)

    Google Scholar 

  • N. Diaz-Elsayed, N.R.T. Guo, S. Mohebbi, Q. Zhang, Wastewater-based resource recovery technologies across scale: a review. Resour. Conserv. Recycl. 145, 94–112 (2019)

    Article  Google Scholar 

  • EPE. Energy Research Company Energy, Use of Urban Solid Waste in Campo Grande (MS: MME/EPE, 2008), p. 73

    Google Scholar 

  • ESMAP, Handbook for the Preparation of Landfill Gas to Energy Projects in Latin America and the Caribbean ([s.n.], Waterloo, 2004). Available in: http://documents.worldbank.org/curated/pt/954761468011430611/pdf/332640handbook.pdf. Access in: agosto de 2020

    Google Scholar 

  • European Commission, Directive 2009/28/EC of the European Parliament and of the Council of 2009 on the Promotion of the Use of Energy from Renewable Sources (2009)

    Google Scholar 

  • Y.V. Fan, J.J. Klemeš, C.T. Lee, S. Perry, Anaerobic digestion of municipal solid waste: energy and carbon emission footprint. J. Environ. Manag. 223, 888–897 (2018)

    Article  CAS  Google Scholar 

  • S.F. Ferreira, L.S. Buller, M. Berni, T.F. Carneiro, Environmental impact assessment of end-uses of biomethane. J. Clean. Prod. 230, 613–621 (2019)

    Article  CAS  Google Scholar 

  • T. Grigoratos, G. Fontaras, B. Giechaskiel, N. Zacharof, Real world emissions performance of heavy-duty Euro VI diesel vehicles. Atmos. Environ. 201(15), 348–359 (2019)

    Article  CAS  Google Scholar 

  • E.C. Gutiérrez, D.M. Parede, R. O’Shea, R.M. Novelo, M.M. Gómez, J.D. Murphy, An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. J. Clean. Prod. 196, 852–862 (2018)

    Article  Google Scholar 

  • P. Holdsworth, A.V. Abad, T. Cherrett, Waste-to- fuel opportunities for British quick service restaurants: a case study. Resour. Conserv. Recycl. 104, 239–253 (2015)

    Article  Google Scholar 

  • IBP – Instituto Brasileiro de Petróleo e Gás, Observatório do setor (2020). Disponível em https://www.ibp.org.br/observatorio-do-setor/monitor/numero-9-ano-ii/. Acesso em 16 de setembro de 2020

  • IEA, World Energy Outlook 2016 (International Energy Agency, 2016)

    Google Scholar 

  • IEE – Instituto de Energia e Ambiente da USP, Modern biomass versus traditional biomass (2018). Available in: http://www.iee.usp.br/gbio/?-q=livro/biomassa-moderna-versus-biomassa-tradicional. Acess in: set. 2020

  • D.Y.X. Ikeda, Thermodynamic analysis of Organic Rankine Cycles integrated to biogas motogenerators in landfills. Dissertation – (Master in Mechanical Engineering), Federal University of Santa Catarina, 2018

    Google Scholar 

  • J. Kirchherr, D. Reike, M. Hekkert, Conceptualizing the circular economy: an analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221–232 (2017)

    Article  Google Scholar 

  • D.L. Klass, Biomass for Renewable Energy, Fuels and Chemicals (Academic, San Diego, 1998)

    Google Scholar 

  • B.D.E. La Farge, Biogas: Processes of Methane Fermentation (Masson Edition, Paris, 1995)

    Google Scholar 

  • W. Li, H. Khalid, F.R. Amin, H. Zhang, Z. Dai, C.C.L. Guangqing, Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion. Renew. Energy 157, 1081–1088 (2020)

    Article  Google Scholar 

  • K.-A. Lyng, A. Brekke, Environmental life cycle assessment of biogas as a fuel for transport compared with alternative fuels. Energies 12(3), 532 (2019)

    Google Scholar 

  • L. Maggioni, C. Pieroni, Report on the biomethane injection into national gas grid (2016). Available in http://www.isaac-project.it/wp-content/uploads/2017/07/D5.2-Report-on-the-biomethane-injection-into-national-gas-grid.pdf. Acess in 31 de agosto de 2020

  • A.F. Marinho, Use of biomethane in the fleet of heavy vehicles (2019). Available in https://www.canalbioenergia.com.br/uso-de-biometano-em-frota-de-veiculos/. Acess in: set. 2020

  • A.K.P. Meyer, E.A. Ehimen, J.B. Holm-Nielsen, European biogas future: potential of animal manure, straw and grass for sustainable biogas production in Europe. Biomass Bioenergy 111, 154–164 (2018)

    Article  Google Scholar 

  • A.Y. Milanez, D.D. Guimarães, G.B.S. Maia, J.A.P. Souza, M.L.F. Lemos, Biogas from agro-industrial waste: overview and perspectives. BNDES Setorial 47, 221–276 (2018)

    Google Scholar 

  • E.A. Moghaddam, S. Ahlgren, C. Hulteberg, A. Nordberg, Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Process. Technol. 132, 74–82 (2015)

    Article  Google Scholar 

  • S.V. Mohan, S. Varjani, D. Pant, M. Sauer, J.-S. Chang, Circular bioeconomy approaches for sustainability. Bioresour. Technol. 318, 124084 (2020)

    Google Scholar 

  • A. Montes, R. Leivas, D. Martinez-Prieto, C. Rico, Biogas production from the liquid waste of distilled gin production: Optimization of UASB reactor performance with increasing organic loading rate for co-digestion with swine wastewater. Bioresour. Technol. 274, 43–47 (2019)

    Article  CAS  Google Scholar 

  • A.M. Nascimento, V.R. Paula, E.H.O. Dias, J.C. Carneiro, M.H. Otenio, Quantitative microbial risk assessment of occupational and public risks associated with bioaerosols generated during the application of dairy cattle wastewater as biofertilizer. Sci. Total Environ. 745, 140711 (2020)

    Google Scholar 

  • F.R. Oliveira, S.L.B. França, L.A.D. Rangel, Principles of circular economy for the development of products in industrial clusters. Interações 20(4), 1179–1193 (2019)

    Google Scholar 

  • M.-Q. Orlando, V.-M. Borja, Pretreatment of animal manure biomass to improve biogas production: a review. Energies 13(14), 3573 (2020)

    Google Scholar 

  • A. Pääkkönen et al., The potential of biomethane to replace fossil fuels in heavy transport – a case study on Finland. Sustainability 11, 4750 (2019)

    Google Scholar 

  • D.G. Pearce, R.W. Butler, Tourism Development: Contemporary Themes (Contexto, Sao Paulo, 2002)

    Google Scholar 

  • M. Raboni, G. Urbini, Production and use of biogas in Europe: a survey of current status and perspectives. Rev. Ambiente Agua 9(2), 191–202 (2014)

    Google Scholar 

  • P. Rathore, S.P. Sarmah, Economic, environmental and social optimization of solid waste management in the context of circular economy. Comput. Ind. Eng. 145, 106510 (2020)

    Google Scholar 

  • REN21, Renewables 2017 Global Status Report, REN21 Secretariat, Renewable Energy Policy Network for the 21st Century (2017)

    Google Scholar 

  • F. Ryan, B. Caulfield, Examining the benefits of using bio-CNG in urban bus operations. Transp. Res. Part D: Transp. Environ. 15(6), 362–365 (2010)

    Article  Google Scholar 

  • E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5), 1633–1645 (2011)

    Article  CAS  Google Scholar 

  • R. Salvador, M.V. Barros, L.M. Luz, C.M. Piekarski, A.C. De Francisco, Circular business models: current aspects that influence implementation and unaddressed subjects. J. Clean. Prod. 250, 119555 (2020)

    Google Scholar 

  • R. Salvador, F.N. Puglieri, A. Halog, F.G. De Andrade, A.C. De Francisco, C.M. Piekarski, Key aspects for designing business models for a circular bioeconomy. J. Clean. Prod. 278, 124341 (2021)

    Google Scholar 

  • É.B. Sarmento et al., Use of sig in the mapping of landfills that produce biogas aiming at the generation of electric energy in Brazil: social, environmental and economic impacts. Environ. Manag. Sustain. Mag 9, 1040–1056 (2020)

    Google Scholar 

  • E. Seabra Júnior, J.C. Colmenero, A. Braghini Junior, Biomass selection method to produce biogas with a multicriteria approach. Waste Biomass Valoriz 12, 3169–3177 (2020)

    Google Scholar 

  • C. Secco, L.M. Luz, E. Pinheiro, A.C. De Francisco, F.N. Puglieri, C.M. Piekarski, F.M.C.S. Freire, Circular economy in the pig farming chain: proposing a model for measurement. J. Clean. Prod. 260, 121003 (2020)

    Google Scholar 

  • E.A. Segura, A.B.. Fuente, M.D.G. Zamar, L.J.B. Urenã, Effects of circular economy policies on the environment and sustainable growth: worldwide research. Sustainability 12, 5792 (2020)

    Google Scholar 

  • K. Shanmugam, A. Baroth, S. Nande, D. Abdelfattah, Social cost benefit analysis of operating compressed biomethane (CBM) transit buses in cities of developing nations: a case study. Sustainability 11(15), 4190 (2019)

    Google Scholar 

  • C. de O. Silva et al., Domestic organic solid waste as a potential substrate for biogas production. Ibero-Am. J. Environ. Sci. 11(2), 204–212 (2020)

    Google Scholar 

  • T. B. de Souza, Review of the cetane index calculation equation for the characteristics of diesel sold in Paraná. Dissertation (master’s degree), Federal University of Paraná, Technology Sector – Engineering Graduate Program PIPE, Curitiba, 2008

    Google Scholar 

  • S.N.M. Souza, W.C. Pereira, C.E. Nogueira, Cost of electricity generated in a generator set using swine bi. Acta Sci. 26(2), 127–133 (2004)

    Google Scholar 

  • M.R. Stilpen, D.V.S. Stilpen, L.F. Mariani, Analysis of the renovabio program within the scope of the biogas and biomethane sector in Brazil. Braz. Energy Rev. 24(4), 7–19 (2018)

    Google Scholar 

  • D. Styles, E.M. Dominguez, D. Chadwick, Environmental balance of the of the UK biogas sector: an evaluation by consequential life cycle assessment. Sci. Total Environ. 560–561, 241–253 (2016)

    Article  Google Scholar 

  • A. Todorut, N. Cordos, C. Iclodean, Replacing diesel buses with electric buses for sustainable public transportation and reduction of CO2 emissions. Pol. J. Environ. Stud. 29(5), 3339–3351 (2020)

    Article  CAS  Google Scholar 

  • G. Velvizhi, S. Shanthakumar, D. Bhaskar, A. Pugazhendhi, T. Shanmuga Priya, B. Ashok, K. Nanthagopal, R. Vignesh, C. Karthick, Biodegradable and non-biodegradable fraction of municipal solid waste for multifaceted applications through a closed loop integrated refinery platform: paving a path towards circular economy. Sci. Total Environ. 731, 138049 (2020)

    Google Scholar 

  • H.G. Vieira, H.Q. Polli, Biogas as an alternative source of energy. Technol. Interface Mag. 17(1), 388–400 (2020)

    Google Scholar 

  • P.R. Yaashikaa, P.S. Kumar, A. Saravanan, S. Varjani, R. Ramamurthy, Bioconversion of municipal solid waste into bio-based products: a review on valorisation and sustainable approach for circular bioeconomy. Sci. Total Environ. 748, 141312 (2020)

    Google Scholar 

  • S. Yalcinkaya, A spatial modeling approach for localization, scaling and economic evaluation of biogas plants centralized in the management organic waste. J. Clean. Prod. 255, 120040 (2020)

    Google Scholar 

  • L. Zhang, K.-C. Loh, J. Zhang. Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports 5, 280–296 (2019)

    Google Scholar 

  • X. Zhang, J. Gu, X. Wang, K. Zhang, Y. Yin, R. Zhang, S. Zhang, Effects of tylosin, ciprofloxacin, and sulfadimidine on mcrA gene abundance and the methanogen community during anaerobic digestion of cattle manure. Chemosphere 221, 81–88 (2019)

    Article  CAS  Google Scholar 

  • Z. Zhou, Y. Tang, J. Dong, Y. Chi, M. Ni, N. Li, Y. Zhang, Environmental performance evolution of municipal solid waste management by life cycle assessment in Hangzhou, China. J. Environ. Manag. 227, 23–33 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Coordination of Improvement of Higher Education Personnel (CAPES) and by the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassiano Moro Piekarski .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Menegheti, G., Pereira, R.B., Piekarski, C.M., de Francisco, A.C., Sydney, E.B., Bittencourt, J.V.M. (2022). Utilization of Biogas from Solid Waste in the Production of Biomethane and Its Use as Biofuel in the Transport Sector. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_103

Download citation

Publish with us

Policies and ethics