Skip to main content

Topology Optimization of Bench Problems—Stress and Deformation Perspective

  • Conference paper
  • First Online:
Recent Advances in Manufacturing, Automation, Design and Energy Technologies

Abstract

Recent advances in topology optimization methods offer better material saving for complex structural applications. This paper investigates noticeable stress variations occurred in the optimized topology through finite element analysis (FEA) with the mesh size as a function to define the stress singularities. The total weight of structure is minimized with the density-based topology optimization scheme. In this article, material volume and element wise stresses are considered as constraints to minimize compliance. The Mitchel cantilever beam, Messerschmitt-Bölkow-Blohm (MBB) Beam, and L-Bracket members are analyzed as benchmark problems to discuss the importance of stress distribution. To find the solution for optimum topological design problem, density-based Simplified Isotropic Material with Penalization (SIMP) method is employed. This study is revealing the stress-based topology optimization is more suitable to achieve stabilized simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kobayashi, M.H.: On a biologically inspired topology optimization method. Commun. Nonlinear Sci. Numer. Simul. 15(3), 787–802 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  3. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75 (1998)

    Article  Google Scholar 

  4. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9–10), 635–654 (1999)

    MATH  Google Scholar 

  5. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  6. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)

    Article  Google Scholar 

  7. Mattheck, C., Burkhardt, S.: A new method of structural shape optimization based on biological growth. Int. J. Fatigue 12(3), 185–190 (1990)

    Article  Google Scholar 

  8. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993)

    Article  Google Scholar 

  9. Young, V., Querin, O.M., Steven, G.P., Xie, Y.M.: 3D and multiple load case bi-directional evolutionary structural optimization (BESO). Struct. Optim. 18(2–3), 183–192 (1999)

    Article  Google Scholar 

  10. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MathSciNet  Google Scholar 

  11. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003)

    Article  MathSciNet  Google Scholar 

  12. Wang, X., Wang, M.Y., Guo, D.: Structural shape and topology optimization in a level-set-based framework of region representation. Struct. Multidiscip. Optim. 27(1–2), 1–19 (2004)

    Article  Google Scholar 

  13. Yulin, M., Xiaoming, W.: A level set method for structural topology optimization and its applications. Adv. Eng. Softw. 35(7), 415–441 (2004)

    Article  Google Scholar 

  14. James, K.A., Lee, E., Martins, J.R.: Stress-based topology optimization using an isoparametric level set method. Finite Elem. Anal. Des. 58, 20–30 (2012)

    Article  Google Scholar 

  15. Guo, X., Zhang, W., Zhong, W.: Stress-related topology optimization of continuum structures involving multi-phase materials. Comput. Methods Appl. Mech. Eng. 268, 632–655 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashok, D., Raju Bahubalendruni, M.V.A., Mertens, J. (2022). Topology Optimization of Bench Problems—Stress and Deformation Perspective. In: Natarajan, S.K., Prakash, R., Sankaranarayanasamy, K. (eds) Recent Advances in Manufacturing, Automation, Design and Energy Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4222-7_80

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4222-7_80

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4221-0

  • Online ISBN: 978-981-16-4222-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics