Skip to main content

Structure, Function, and Healing Response of Articular Cartilage and Meniscus

  • Chapter
  • First Online:
A Strategic Approach to Knee Arthritis Treatment

Abstract

Articular cartilage is a tissue that forms the surface of the joint, which reduces friction during the lifetime and enables the synovial joint to perform the painless joint movement. Articular cartilage consists of a rich matrix and specially differentiated chondrocytes sparsely distributed between them. The articular cartilage matrix protects chondrocytes from damage that may occur due to normal joint movement, provides elasticity to the joints, provides a lubrication system for low-friction movements between the synovial fluid and the cartilage, and regulates the movement of matrix macromolecules throughout life. However, with age, chondrocytes gradually lose their ability, and given repeated damage, cartilage dysfunction eventually leads to osteoarthritis. The meniscus is two crescent-shaped fibrocartilage structures between the femoral condyle and tibial plateau. The meniscus is the primary stabilizing structure of the knee joint having important functions such as load transmission, absorb shock, joint stability and lubrication. The inner two-third of the meniscus is a relatively avascular structure and is not well recover when torn. Since only the peripheral part of the meniscus has the ability to heal, the location of the tear is the most important factor in restoring the torn meniscus. However, in order to overcome this, several studies are being conducted that can improve the healing potential in the torn meniscus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stockwell RA. The cell density of human articular and costal cartilage. J Anat. 1967;101(Pt 4):753–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stockwell RA. Chondrocytes. J Clin Pathol Suppl (R Coll Pathol). 1978;12:7–13.

    Article  CAS  Google Scholar 

  3. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465–80.

    PubMed  Google Scholar 

  4. Aydelotte MB, Greenhill RR, Kuettner KE. Differences between sub-populations of cultured bovine articular chondrocytes. II. Proteoglycan metabolism. Connect Tissue Res. 1988;18(3):223–34.

    Article  CAS  PubMed  Google Scholar 

  5. Guerne PA, Blanco F, Kaelin A, Desgeorges A, Lotz M. Growth factor responsiveness of human articular chondrocytes in aging and development. Arthritis Rheum. 1995;38(7):960–8.

    Article  CAS  PubMed  Google Scholar 

  6. Martin JA, Buckwalter JA. Articular cartilage aging and degeneration. Sports Med Arthrosc Rev. 1996;4(3):263–75.

    Article  Google Scholar 

  7. Martin JA, Ellerbroek SM, Buckwalter JA. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J Orthop Res. 1997;15(4):491–8.

    Article  CAS  PubMed  Google Scholar 

  8. Meachim G. Effect of age on the thickness of adult articular cartilage at he shoulder joint. Ann Rheum Dis. 1971;30(1):43–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gurr E, Mohr W, Pallasch G. Proteoglycans from human articular cartilage: the effect of joint location on the structure. J Clin Chem Clin Biochem. 1985;23(12):811–9.

    CAS  PubMed  Google Scholar 

  10. Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67–97.

    Article  CAS  PubMed  Google Scholar 

  11. Buckwalter JA, Rosenberg LA, Hunziker EB, et al. Articular cartilage: composition, structure, response to injury, and methods of facilitation repair. In: Ewing JW, editor. Articular cartilage and knee joint function: basic science and arthroscopy. New York, NY: Raven Press; 1990. p. 19–56.

    Google Scholar 

  12. Sandell LJ. Molecular biology of collagens in normal and osteoarthritic cartilage. In: Kuettner KE, Goldberg VM, editors. Osteoarthritic disorders. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1995. p. 131–46.

    Google Scholar 

  13. Marcelino J, McDevitt CA. Attachment of articular cartilage chondrocytes to the tissue form of type VI collagen. Biochem Biophys Acta. 1995;1249:180–8.

    PubMed  Google Scholar 

  14. Schmid TM, Linsenmayer TF. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 1985;100(2):598–605.

    Article  CAS  PubMed  Google Scholar 

  15. Roughley PJ, Lee ER. Cartilage proteoglycans: structure and potential functions. Microsc Res Tech. 1994;28:385–97.

    Article  CAS  PubMed  Google Scholar 

  16. Bayliss MT, Venn M, Maroudas A, Ali SY. Structure of proteoglycans from different layers of human articular cartilage. Biochem J. 1983;209(2):387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang LH, Buckwalter JA, Rosenberg LC. The effect of link protein concentration on articular cartilage proteoglycan aggregation. J Orthop Res. 1996;14:334–9.

    Article  CAS  PubMed  Google Scholar 

  18. Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC. Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res. 1994;12(4):474–84.

    Article  CAS  PubMed  Google Scholar 

  19. Redler I, Mow VC, Zimny ML, Mansell J. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Relat Res. 1975;112:357–62.

    Article  Google Scholar 

  20. Oegema TR, Thompson RC. Histopathology and pathobiochemistry of the cartilage-bone interface in osteoarthritis. In: Kuettner KE, Goldberg VM, editors. Osteoarthritic disorders. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1995. p. 205–17.

    Google Scholar 

  21. Buckwalter JA, Martin J, Mankin H. Synovial joint degeneration and the syndrome of osteoarthritis. Instr Course Lect. 2000;49:481–9.

    CAS  PubMed  Google Scholar 

  22. Mow VC, Rosenwasser M. Articular cartilage: biomechanics. Injury and repair of the musculoskeletal soft tissues 1988:427–463.

    Google Scholar 

  23. Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115(3):622–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hamerman D. The biology of osteoarthritis. N Engl J Med. 1989;320(20):1322–30.

    Article  CAS  PubMed  Google Scholar 

  25. Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis. 2013;5(2):77–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buckwalter JA. Mechanical injuries of articular cartilage. In: Finerman G, editor. Biology and biomechanics of the traumatized synovial joint. Ridge, IL: American Academy of Orthopaedic Surgeons; 1992. p. 83–96.

    Google Scholar 

  27. Buckwalter JA. Chondral and osteochondral injuries: mechanisms of injury and repair responses. Oper Tech Orthop. 1997;7(4):263–9.

    Article  Google Scholar 

  28. Buckwalter JA, Einhorn TA, Bolander ME. Healing of musculoskeletal tissues. In: Rockwood CA, Green D, editors. Fractures. Philadelphia, PA: Lippincott; 1996. p. 261–304.

    Google Scholar 

  29. Berlet GC, Fowler PJ. The anterior horn of the medical meniscus. An anatomic study of its insertion. Am J Sports Med. 1998;26(4):540–3.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson DL, Swenson TM, Livesay GA, Aizawa H, Fu FH, Harner CD. Insertion-site anatomy of the human menisci: gross, arthroscopic, and topographical anatomy as a basis for meniscal transplantation. Arthroscopy. 1995;11(4):386–94.

    Article  CAS  PubMed  Google Scholar 

  31. Simonian PT, Sussmann PS, van Trommel M, Wickiewicz TL, Warren RF. Popliteomeniscal fasciculi and lateral meniscal stability. Am J Sports Med. 1997;25(6):849–53.

    Article  CAS  PubMed  Google Scholar 

  32. Nathan PA, Cole SC. Discoid meniscus. A clinical and pathologic study. Clin Orthop Relat Res. 1969;64:107–13.

    CAS  PubMed  Google Scholar 

  33. Sommerlath K, Gillquist J. The effect of a meniscal prosthesis on knee biomechanics and cartilage. An experimental study in rabbits. Am J Sports Med. 1992;20(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  34. Nelson EW, LaPrade RF. The anterior intermeniscal ligament of the knee. An anatomic study. Am J Sports Med. 2000;28(1):74–6.

    Article  CAS  PubMed  Google Scholar 

  35. Kohn D, Moreno B. Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy. 1995;11(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  36. Gupte CM, Bull AM, Thomas RD, Amis AA. The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg Br. 2003;85(5):765–73.

    Article  PubMed  Google Scholar 

  37. Wan AC, Felle P. The menisco-femoral ligaments. Clin Anat. 1995;8(5):323–6.

    Article  CAS  PubMed  Google Scholar 

  38. Ingman AM, Ghosh P, Taylor TK. Variation of collagenous and non-collagenous proteins of human knee joint menisci with age and degeneration. Gerontologia. 1974;20(4):212–23.

    Article  CAS  PubMed  Google Scholar 

  39. Eyre DR, Wu JJ. Collagen of fibrocartilage: a distinctive molecular phenotype in bovine meniscus. FEBS Lett. 1983;158(2):265–70.

    Article  CAS  PubMed  Google Scholar 

  40. Cheung HS. Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res. 1987;16(4):343–56.

    Article  CAS  PubMed  Google Scholar 

  41. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg Br. 1970;52(3):564–7.

    Article  CAS  PubMed  Google Scholar 

  42. Beaupre A, Choukroun R, Guidouin R, Garneau R, Gerardin H, Cardou A. Knee menisci. Correlation between microstructure and biomechanics. Clin Orthop Relat Res. 1986;208:72–5.

    Google Scholar 

  43. Webber RJ, Harris MG, Hough AJ. Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res. 1985;3(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  44. Petersen W, Tillmann B. Age-related blood and lymph supply of the knee menisci. A cadaver study. Acta Orthop Scand. 1995;66(4):308–12.

    Article  CAS  PubMed  Google Scholar 

  45. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.

    Article  CAS  PubMed  Google Scholar 

  46. Kennedy JC, Alexander IJ, Hayes KC. Nerve supply of the human knee and its functional importance. Am J Sports Med. 1982;10(6):329–35.

    Article  CAS  PubMed  Google Scholar 

  47. Day B, Mackenzie WG, Shim SS, Leung G. The vascular and nerve supply of the human meniscus. Arthroscopy. 1985;1(1):58–62.

    Article  CAS  PubMed  Google Scholar 

  48. Dye SF, Vaupel GL, Dye CC. Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. Am J Sports Med. 1998;26(6):773–7.

    Article  CAS  PubMed  Google Scholar 

  49. Radin EL, de Lamotte F, Maquet P. Role of the menisci in the distribution of stress in the knee. Clin Orthop Relat Res. 1984;185:290–4.

    Google Scholar 

  50. Watanabe Y, Scyoc AV, Tsuda E, Debski RE, Woo SL. Biomechanical function of the posterior horn of the medial meniscus: a human cadaveric study. J Orthop Sci. 2004;9(3):280–4.

    Article  PubMed  Google Scholar 

  51. Voloshin AS, Wosk J. Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng. 1983;5(2):157–61.

    Article  CAS  PubMed  Google Scholar 

  52. Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res. 2000;18(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  53. Wang CJ, Walker PS. Rotatory laxity of the human knee joint. J Bone Joint Surg Am. 1974;56(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  54. Thompson WO, Thaete FL, Fu FH, Dye SF. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 1991;19(3):210–215; discussion 5–6.

    Google Scholar 

  55. Ritchie JR, Miller MD, Bents RT, Smith DK. Meniscal repair in the goat model. The use of healing adjuncts on central tears and the role of magnetic resonance arthrography in repair evaluation. Am J Sports Med. 1998;26(2):278–84.

    Article  CAS  PubMed  Google Scholar 

  56. Dowdy PA, Miniaci A, Arnoczky SP, Fowler PJ, Boughner DR. The effect of cast immobilization on meniscal healing. An experimental study in the dog. Am J Sports Med. 1995;23(6):721–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Suk Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seo, SS., Lee, IS., Seo, YC. (2021). Structure, Function, and Healing Response of Articular Cartilage and Meniscus. In: Seo, SS. (eds) A Strategic Approach to Knee Arthritis Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-16-4217-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4217-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4216-6

  • Online ISBN: 978-981-16-4217-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics