Skip to main content

Function-Inspired Design of Molecular Hydrogels: Paradigm-Shifting Biomaterials for Biomedical Applications

  • Chapter
  • First Online:
Molecular Architectonics and Nanoarchitectonics

Abstract

Molecular hydrogels represent a fascinating area of research that has its roots in drug delivery. However, now molecular hydrogels play an intrinsic role in a multitude of applications in various fields of biomedical research such as bioengineering, immunotherapy, tissue adhesives and sealants, cell growth matrices, and stimuli-responsive materials. The design of new biomaterials that can release cargo depending on multiple stimuli and their capacity to hold vast amounts of cargo has significantly expanded their use. However, their clinical translation is still dependent on their intrinsic design and is governed by multiple factors such as easy clearance, lack of immune response, and breakdown into nontoxic products. This chapter describes a few accounts of a new class of molecular hydrogels with their potential applications through preclinical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan X, He B, Lv Z, Luo S (2014) Fabrication of self-assembling peptide nanofiber hydrogels for myocardial repair. RSC Adv 4:53801–53811

    Article  CAS  Google Scholar 

  2. Chen J, Zou X (2019) Self-assemble peptide biomaterials and their biomedical applications. Bioact Mater 4:120–131

    Article  Google Scholar 

  3. Seow WY, Salgado G, Lane EB, Hauser CAE (2016) Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds. Sci Rep 6:1–12

    Article  CAS  Google Scholar 

  4. Carlini AS et al (2019) Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat Commun 10:1–14

    Article  CAS  Google Scholar 

  5. Webber MJ, Matson JB, Tamboli VK, Stupp SI (2012) Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials 33:6823–6832

    Article  CAS  Google Scholar 

  6. Kapadia MR et al (2008) Nitric oxide and nanotechnology: a novel approach to inhibit neointimal hyperplasia. J Vasc Surg 47:173–182

    Article  Google Scholar 

  7. Aldilla VR et al (2020) Anthranilamide-based short peptides self-assembled hydrogels as antibacterial agents. Sci Rep 10:1–12

    Article  CAS  Google Scholar 

  8. Xu C, Cai Y, Ren C, Gao J, Hao J (2015) Zinc-triggered hydrogelation of self-assembled small molecules to inhibit bacterial growth. Sci Rep 5:1–7

    Google Scholar 

  9. Ettmayer P, Amidon GL, Clement B, Testa B (2004) Lessons learned from marketed and investigational prodrugs. J Med Chem 47:2393–2404

    Article  CAS  Google Scholar 

  10. Rautio J et al (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    Article  CAS  Google Scholar 

  11. Vemula PK et al (2013) Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials. Curr Opin Biotechnol 24:1174–1182

    Article  CAS  Google Scholar 

  12. Vemula PK, Cruikshank GA, Karp JM, John G (2009) Self-assembled prodrugs: an enzymatically triggered drug-delivery platform. Biomaterials 30:383–393

    Article  CAS  Google Scholar 

  13. Bhuniya S, Seo YJ, Kim BH (2006) (S)-(+)-Ibuprofen-based hydrogelators: an approach toward anti-inflammatory drug delivery. Tetrahedron Lett 47:7153–7156

    Article  CAS  Google Scholar 

  14. Vemula PK, Li J, John G (2006) Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J Am Chem Soc 128:8932–8938

    Article  CAS  Google Scholar 

  15. Nicolaou KC, Guy RK, Pitsinos EN, Wrasidlo W (1994) A water-soluble prodrug of Taxol with self-assembling properties. Angew Chemie Int Ed English 33:1583–1587

    Article  Google Scholar 

  16. Gao Y et al (2009) Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J Am Chem Soc 131:13576–13577

    Article  CAS  Google Scholar 

  17. Xing B et al (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847

    Article  CAS  Google Scholar 

  18. Yang Z et al (2007) D-glucosamine-based supramolecular hydrogels to improve wound healing. Chem Commun 8:843–845

    Article  Google Scholar 

  19. Gajanayake T et al (2014) A single localized dose of enzyme-responsive hydrogel improves long-term survival of a vascularized composite allograft. Sci Transl Med 6:249ra110

    Article  CAS  Google Scholar 

  20. Dzhonova DV et al (2018) Local injections of tacrolimus-loaded hydrogel reduce systemic immunosuppression-related toxicity in vascularized composite allotransplantation. Transplantation

    Google Scholar 

  21. Dzhonova D et al (2018) Local release of tacrolimus from hydrogel- based drug delivery system is controlled by inflammatory enzymes in vivo and can be monitored non-invasively using in vivo imaging. PLoS One 13:1–16

    Article  CAS  Google Scholar 

  22. Anton Fries C et al (2019) Graft-implanted, enzyme responsive, tacrolimus-eluting hydrogel enables long-term survival of orthotopic porcine limb vascularized composite allografts: a proof of concept study. PLoS One 14:1–15

    Google Scholar 

  23. Joshi N et al (2018) Towards an arthritis flare-responsive drug delivery system. Nat Commun 9

    Google Scholar 

  24. Zhang S et al (2015) An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med 7:1275

    Article  Google Scholar 

  25. Vemula PK et al (2011) On-demand drug delivery from self-assembled nanofibrous gels: a new approach for treatment of proteolytic disease. J Biomed Mater Res–Part A 97(A):103–110

    Article  CAS  Google Scholar 

  26. Jemal A, Bray F, Ferlay J (2011) Global cancer statistics: 2011. CA Cancer J Clin 61:69–90

    Article  Google Scholar 

  27. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481

    Article  CAS  Google Scholar 

  28. Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506

    Article  CAS  Google Scholar 

  29. Li Y, Rodrigues J, Tomás H (2012) Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 41:2193–2221

    Article  CAS  Google Scholar 

  30. Du X, Zhou J, Shi J, Xu B (2015) Supramolecular Hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307

    Article  CAS  Google Scholar 

  31. Yang C et al (2013) Disulfide bond reduction-triggered molecular hydrogels of folic acid-Taxol conjugates. Org Biomol Chem 11:6946–6951

    Article  CAS  Google Scholar 

  32. Wang H et al (2012) The inhibition of tumor growth and metastasis by self-assembled nanofibers of taxol. Biomaterials 33:5848–5853

    Article  CAS  Google Scholar 

  33. Ren C et al (2014) Gemcitabine induced supramolecular hydrogelations of aldehyde-containing short peptides. RSC Adv 4:34729–34732

    Article  CAS  Google Scholar 

  34. Wang H et al (2011) Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chem Commun 47:4439–4441

    Article  CAS  Google Scholar 

  35. Li J et al (2013) Dephosphorylation of d -peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J Am Chem Soc 135:9907–9914

    Article  CAS  Google Scholar 

  36. Wang H et al (2016) Integrating enzymatic self-assembly and mitochondria targeting for selectively killing cancer cells without acquired drug resistance. J Am Chem Soc 138:16046–16055

    Article  CAS  Google Scholar 

  37. Kenney RM, Boyce MW, Whitman NA, Kromhout BP, Lockett MR (2018) A pH-sensing Optode for mapping spatiotemporal gradients in 3D paper-based cell cultures. Anal Chem 90:2376–2383

    Article  CAS  Google Scholar 

  38. Daglar B, Ozgur E, Corman ME, Uzun L, Demirel GB (2014) Polymeric nanocarriers for expected nanomedicine: current challenges and future prospects. RSC Adv 4:48639–48659

    Article  CAS  Google Scholar 

  39. Liang J, Wu WL, Xu XD, Zhuo RX, Zhang XZ (2014) PH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier. Colloids Surfaces B Biointerfaces 114:398–403

    Article  CAS  Google Scholar 

  40. Yata T et al (2017) DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials 146:136–145

    Article  CAS  Google Scholar 

  41. Zou Q, Chang R, Xing R, Yuan C, Yan X (2020) Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy. J Control Release 319:344–351

    Article  CAS  Google Scholar 

  42. Weiss RG, Terech P (2006) Molecular gels: materials with self-assembled fibrillar networks. Molecular Gels: Materials with Self-Assembled Fibrillar Networks

    Google Scholar 

  43. Smith DK (2008) Molecular gels–nanostructured soft materials. Organic Nanostructures

    Google Scholar 

  44. Truong WT, Su Y, Meijer JT, Thordarson P, Braet F (2011) Self-assembled gels for biomedical applications. Chem–An Asian J 6:30–42

    Article  CAS  Google Scholar 

  45. Kumar S, Bajaj A (2020) Advances in self-assembled injectable hydrogels for cancer therapy. Biomater Sci 8:2055–2073

    Article  CAS  Google Scholar 

  46. Singh M et al (2014) Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin. Nanoscale 6:12849–12855

    Article  CAS  Google Scholar 

  47. Zhang K, Zhou L, Chen F, Chen Y, Luo X (2019) Injectable gel self-assembled by paclitaxel itself for in situ inhibition of tumor growth. J Control Release 315:197–205

    Article  CAS  Google Scholar 

  48. Zhi K, Wang J, Zhao H, Yang X (2020) Self-assembled small molecule natural product gel for drug delivery: a breakthrough in new application of small molecule natural products. Acta Pharm Sin B 10:913–927

    Article  CAS  Google Scholar 

  49. Maity M, Maitra U (2017) Supramolecular gels from conjugates of bile acids and amino acids and their applications. European J Org Chem 2017:1713–1720

    Article  CAS  Google Scholar 

  50. Yang JA, Yeom J, Hwang BW, Hoffman AS, Hahn SK (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39:1973–1986

    Article  CAS  Google Scholar 

  51. Koutsopoulos S (2016) Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J Biomed Mater Res–Part A 104:1002–1016

    Article  CAS  Google Scholar 

  52. Kim JE, Kim SH, Jung Y (2015) In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. J Biosci Bioeng 120:91–98

    Article  CAS  Google Scholar 

  53. Nguyen PK et al (2018) Self-assembly of a Dentinogenic peptide hydrogel. ACS Omega 3:5980–5987

    Article  CAS  Google Scholar 

  54. Hsieh PCH, Davis ME, Gannon J, MacGillivray C, Lee RT (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116:237–248

    Article  CAS  Google Scholar 

  55. Bastings MMC et al (2014) A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthc Mater 3:70–78

    Article  CAS  Google Scholar 

  56. Elnaggar YSR, Talaat SM, Bahey-El-Din M, Abdallah OY (2016) Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies. Int J Nanomedicine 11:5531–5547

    Article  CAS  Google Scholar 

  57. Zhao CC et al (2019) Resveratrol-loaded peptide-hydrogels inhibit scar formation in wound healing through suppressing inflammation. Regen Biomater 7:99–107

    Google Scholar 

  58. Xing R, Liu Y, Zou Q, Yan X (2019) Self-assembled injectable biomolecular hydrogels towards phototherapy. Nanoscale 11:22182–22195

    Article  CAS  Google Scholar 

  59. Abbas M, Zou Q, Li S, Yan X (2017) Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and Photothermal therapy. Adv Mater 29

    Google Scholar 

  60. Zhang Y et al (2018) An injectable dipeptide-fullerene supramolecular hydrogel for photodynamic antibacterial therapy. J Mater Chem B 6:7335–7342

    Article  CAS  Google Scholar 

  61. Raymond DM et al (2019) Low-molecular-weight supramolecular hydrogels for sustained and localized in vivo drug delivery. ACS Appl. Bio Mater. 2:2116–2124

    Article  CAS  Google Scholar 

  62. Li Z et al (2016) Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation. Drug Deliv 23:3168–3178

    Article  CAS  Google Scholar 

  63. Faidra Angelerou MG et al (2020) Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo. J Control Release 317:118–129

    Article  CAS  Google Scholar 

  64. Loo Y et al (2019) A chemically well-defined, self-assembling 3D substrate for long-term culture of human pluripotent stem cells. ACS Appl Bio Mater 2:1406–1412

    Article  CAS  Google Scholar 

  65. Loo Y et al (2015) Peptide bioink: self-assembling Nanofibrous scaffolds for three-dimensional Organotypic cultures. Nano Lett 15:6919–6925

    Article  CAS  Google Scholar 

  66. Tong C et al (2018) Squaramide-based supramolecular materials for three-dimensional cell culture of human induced pluripotent stem cells and their derivatives. Biomacromolecules 19:1091–1099

    Article  CAS  Google Scholar 

  67. Godbe JM et al (2020) Gelator length precisely tunes supramolecular hydrogel stiffness and neuronal phenotype in 3D culture. ACS Biomater Sci Eng 6:1196–1207

    Article  CAS  Google Scholar 

  68. Alakpa EV et al (2016) Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures. Chem 1:298–319

    Article  CAS  Google Scholar 

  69. Alakpa EV et al (2017) Improving cartilage phenotype from differentiated pericytes in tunable peptide hydrogels. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  70. Takeuchi T et al (2016) Enhanced healing of surgical periodontal defects in rats following application of a self-assembling peptide nanofibre hydrogel. J Clin Periodontol 43:279–288

    Article  CAS  Google Scholar 

  71. Li H et al (2018) Folic acid derived hydrogel enhances the survival and promotes therapeutic efficacy of iPS cells for acute myocardial infarction. ACS Appl Mater Interfaces 10:24459–24468

    Article  CAS  Google Scholar 

  72. Huang A et al (2019) Self-assembled GFFYK peptide hydrogel enhances the therapeutic efficacy of mesenchymal stem cells in a mouse hindlimb ischemia model. Acta Biomater 85:94–105

    Article  CAS  Google Scholar 

  73. Pal VK, Jain R, Roy S (2020) Tuning the supramolecular structure and function of collagen mimetic ionic complementary peptides via electrostatic interactions. Langmuir 36:1003–1013

    Article  CAS  Google Scholar 

  74. Ibáñez-Fonseca A et al (2020) Influence of the thermodynamic and kinetic control of self-assembly on the microstructure evolution of silk-elastin-like Recombinamer hydrogels. Small 16

    Google Scholar 

  75. Barros D, Amaral IF, Pêgo AP (2020) Laminin-inspired cell-instructive microenvironments for neural stem cells. Biomacromolecules 21:276–293

    Article  CAS  Google Scholar 

  76. Lash JW, Linask KK, Yamada KM (1987) Synthetic peptides that mimic the adhesive recognition signal of fibronectin: differential effects on cell-cell and cell-substratum adhesion in embryonic chick cells. Dev Biol 123:411–420

    Article  CAS  Google Scholar 

  77. Teng L, Chen Y, Jia YG, Ren L (2019) Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. J Mater Chem B 7:6705–6736

    Article  CAS  Google Scholar 

  78. Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF (2020) Advanced bottom-up engineering of living architectures. Adv Mater 32

    Google Scholar 

  79. Nicolas J et al (2020) 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules 21:1968–1994

    Article  CAS  Google Scholar 

  80. Gavel PK, Kumar N, Parmar HS, Das AK (2020) Evaluation of a peptide-based Coassembled Nanofibrous and thixotropic hydrogel for dermal wound healing. ACS Appl Bio Mater 3:3326–3336

    Article  CAS  Google Scholar 

  81. Das AK, Gavel PK (2020) Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 16:10065–10095

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. Dhayani thanks University Grant Commission for Senior Research Fellowship. MKD thanks bridging postdoctoral fellowship, CORE Grant from DBT-inStem. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Vemula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhayani, A. et al. (2022). Function-Inspired Design of Molecular Hydrogels: Paradigm-Shifting Biomaterials for Biomedical Applications. In: Govindaraju, T., Ariga, K. (eds) Molecular Architectonics and Nanoarchitectonics. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-4189-3_9

Download citation

Publish with us

Policies and ethics