Skip to main content

Bacteria Identification in Machangara River Water Capable of Metabolizing Emerging Estrone Pollutant

  • Conference paper
  • First Online:
Communication, Smart Technologies and Innovation for Society

Abstract

Estrone (E1) is an important emerging pollutant due to its significant prevalence in the environment and the association with estrogenic activity, causing ecological effects such as the feminization of aquatic organisms. Although E1 is degraded in wastewater treatment, the elimination is not complete; therefore, biological treatments could be an alternative. Bacteria such as Nitrosomonas europea, Pseudomonas spp., Sphingomonas spp., and Sphingobacterium spp. under aerobic conditions oxidize E1 because of their ability to use estrogens as a source of carbon and energy, producing smaller and less toxic products. For this reason, this study aimed to isolate and identify bacteria from wastewater of two areas with this pollutant in the Machángara river located in Quito-Ecuador, capable of using the emerging pollutant estrone as the only carbon source. Pseudomonas putida was identified in this river as a microorganism that uses estrone as the only carbon source, obtaining an estrone consumption of 100% after 120 h of exposure with 5% v/v of inoculum. These results can be used as the basis for future biodegradation assays of this pollutant in water sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Vaz, What are emerging pollutants (EPs) and their fate on the environment, in Analytical Chemistry Applied to Emerging Pollutants (2018), pp. 1–13. https://doi.org/10.1007/978-3-319-74403-2_1

  2. A.A. Khan, R. Ahmad, I. Ahmad, Density functional theory study of emerging pollutants removal from water by covalent triazine based framework. J Mol Liq 309 (2020) https://doi.org/10.1016/j.molliq.2020.113008

  3. S. Mokrane, D. Harik, H. Cabana, Identification of Emerging Contaminants in Drinking Waters, pp. 785–787 (2018). https://doi.org/10.1007/978-3-319-70548-4_230

  4. B. Pauwels, K. Wille, H. Noppe, H. De Brabander, T. Van De Wiele, W. Verstraete, N. Boon, 17Α-ethinylestradiol cometabolism by bacteria degrading estrone, 17Β-estradiol and estriol. Biodegradation 19, 683–693 (2008). https://doi.org/10.1007/s10532-007-9173-z

    Article  Google Scholar 

  5. A. Pratush, Q. Yang, T. Peng, T. Huang, Z. Hu, Identification of non-accumulating intermediate compounds during estrone (E1) metabolism by a newly isolated microbial strain BH2-1 from mangrove sediments of the South China Sea. Environ. Sci. Pollut. Res. 27, 5097–5107 (2020). https://doi.org/10.1007/s11356-019-06894-1

    Article  Google Scholar 

  6. A. Voloshenko-Rossin, G. Gasser, K. Cohen, J. Gun, L. Cumbal-Flores, W. Parra-Morales, F. Sarabia, F. Ojeda, O. Lev, Emerging pollutants in the Esmeraldas watershed in Ecuador: discharge and attenuation of emerging organic pollutants along the San Pedro–Guayllabamba–Esmeraldas rivers. Env. Sci. Process. Impacts 17, 41–53 (2015). https://doi.org/10.1039/C4EM00394B

  7. C. Peña-Guzmán, S. Ulloa-Sánchez, K. Mora, R. Helena-Bustos, E. Lopez-Barrera, J. Alvarez, M. Rodriguez-Pinzón, Emerging pollutants in the urban water cycle in Latin America: a review of the current literature. J. Environ. Manage. 237, 408–423 (2019). https://doi.org/10.1016/j.jenvman.2019.02.100

    Article  Google Scholar 

  8. G. Reichert, S. Hilgert, S. Fuchs, J.C.R. Azevedo, Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environ. Pollut. 255 (2019). https://doi.org/10.1016/j.envpol.2019.113140

  9. T.K.A. Tran, R.M.K. Yu, R. Islam, T.H.T. Nguyen, T.L.H. Bui, R.Y.C. Kong, W.A. O’Connor, F.D.L. Leusch, M. Andrew-Priestley, G.R. MacFarlane, The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. Environ. Pollut. 248, 1067–1078 (2019). https://doi.org/10.1016/j.envpol.2019.02.056

    Article  Google Scholar 

  10. D.P. Moser, B.P. Hedlund, M.R. Rosen, S.M. Blunt, M.J. Benotti, Reversible reduction of estrone to 17β-estradiol by Rhizobium, Sphingopyxis, and Pseudomonas and Isolates from the Las Vegas Wash. J. Env. Qual. 46, 281 (2017). https://doi.org/10.2134/jeq2016.08.0286

    Article  Google Scholar 

  11. Z. Li, R. Nandakumar, N. Madayiputhiya, X. Li, Proteomic analysis of 17β-estradiol degradation by Stenotrophomonas maltophilia. Environ. Sci. Technol. 46, 5947–5955 (2012). https://doi.org/10.1021/es300273k

    Article  Google Scholar 

  12. S. Weber, P. Leuschner, P. Kämpfer, W. Dott, J. Hollender, Degradation of estradiol and ethinyl estradiol by activated sludge and by a defined mixed culture. Appl. Microbiol. Biotechnol. 67, 106–112 (2005). https://doi.org/10.1007/s00253-004-1693-4

    Article  Google Scholar 

  13. APHA, 5210 Biological Oxygen Demand (Bod)*, pp. 2–13 (2012)

    Google Scholar 

  14. TULAS, Norma de Calidad Ambiental y de descarga de Efluentes: Recurso Agua. TULAS Texto unificado de legislación secundaria del Ministerio del Ambiente 8–9 (2011)

    Google Scholar 

  15. S. Ríos, R. Agudelo, L. Gutiérrez, Patógenos e Indicadores Microbiológicos de Calidad del Agua Para Consumo Humano (2017). https://doi.org/10.17533/udea.rfnsp.v35n2a08

  16. D. Ortega-Paredes, P. Barba, S. Mena-López, N. Espinel, V. Crespo, J. Zurita, High quantities of multidrug-resistant Escherichia coli are present in the Machángara urban river in Quito, Ecuador. J. Water Health 18, 67–76 (2020). https://doi.org/10.2166/wh.2019.195

    Article  Google Scholar 

  17. R. Clarke, D. Peyton, M.G. Healy, O. Fenton, E. Cummins, A quantitative microbial risk assessment model for total coliforms and E. coli in surface runoff following application of biosolids to grassland. Environ. Pollut. 224, 739–750 (2017). https://doi.org/10.1016/j.envpol.2016.12.025

    Article  Google Scholar 

  18. L. Yang, X.H. Wang, S. Cui, Y.X. Ren, J. Yu, N. Chen, Q. Xiao, L.K. Guo, R.H. Wang, Simultaneous removal of nitrogen and phosphorous by heterotrophic nitrification-aerobic denitrification of a metal resistant bacterium Pseudomonas putida strain NP5. Bioresour. Technol. 285 (2019). https://doi.org/10.1016/j.biortech.2019.121360

  19. B.E. Pierce, M.J. Leboffe, A Photographic Atlas Microbiology Laboratory

    Google Scholar 

  20. B. Serra, J. Zhang, M.D. Morales, A.G.V. de Prada, A.J. Reviejo, J.M. Pingarrón, A rapid method for detection of catalase-positive and catalase-negative bacteria based on monitoring of hydrogen peroxide evolution at a composite peroxidase biosensor. Talanta 75, 1134–1139 (2008). https://doi.org/10.1016/j.talanta.2008.01.009

    Article  Google Scholar 

  21. I. Altinok, S. Kayis, E. Capkin, Pseudomonas putida infection in rainbow trout. Aquaculture 261, 850–855 (2006). https://doi.org/10.1016/j.aquaculture.2006.09.009

    Article  Google Scholar 

  22. M. Tzirita, S. Papanikolaou, B. Quilty, Enhanced fat degradation following the addition of a Pseudomonas species to a bioaugmentation product used in grease traps. J. Environ. Sci. (China) 77, 174–188 (2019). https://doi.org/10.1016/j.jes.2018.07.008

    Article  Google Scholar 

  23. W. Xiang, S. Chen, D. Tian, C. Huang, T. Gao, Pseudomonas hutmensis sp. nov., a New Fluorescent Member of Pseudomonas putida Group. Curr. Microbiol. 76, 872–878 (2019). https://doi.org/10.1007/s00284-019-01701-z

    Article  Google Scholar 

  24. P. Wang, D. Zheng, R. Liang, Isolation and characterization of an estrogen-degrading Pseudomonas putida strain SJTE-1. 3 Biotech 9:0 (2019). https://doi.org/10.1007/s13205-018-1537-z

  25. D.P. Moser, B.P. Hedlund, M.R. Rosen, S.M. Blunt, M.J. Benotti, Reversible reduction of estrone to 17β-estradiol by, and isolates from the Las Vegas Wash. J. Env. Qual. 46, 281 (2017). https://doi.org/10.2134/jeq2016.08.0286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Méndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Méndez, G., Vásquez, K., Coyago, E. (2022). Bacteria Identification in Machangara River Water Capable of Metabolizing Emerging Estrone Pollutant. In: Rocha, Á., López-López, P.C., Salgado-Guerrero, J.P. (eds) Communication, Smart Technologies and Innovation for Society . Smart Innovation, Systems and Technologies, vol 252. Springer, Singapore. https://doi.org/10.1007/978-981-16-4126-8_3

Download citation

Publish with us

Policies and ethics