Skip to main content

Structure and Geological Processes of the Earth: Seismic Evidences from the Indian Shield

  • Chapter
  • First Online:
Geological and Geo-Environmental Processes on Earth

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

  • 747 Accesses

Abstract

The Earth is a dynamic planet with a large number of geological processes taking place inside it. The internal processes lift and build the Earth’s surface, whereas the external processes tend to destroy the shape of the Earth’s relief by weathering, erosion and hydrological cycle. The paper places the crustal structure of the Indian shield in the context of global processes and evolution of the Earth. It summarizes internal structure of the Earth from core to crust and addresses numerous geological processes, like evolution of continental crust, operation of plate tectonics, convection currents, mantle plumes and supercontinental episodes using seismic and seismological images. Seismic images provide key evidences of the geological processes that are being taking place inside the Earth. Seismic images from the Archean and Proterozoic terrains of the Indian shield show evidence for operation of plate tectonics since Neoarchean. Further, they suggest differences in mode of subduction process during these periods. They provide evidences for the associated processes, like delamination, asthenospheric upwelling, and generation of younger Moho due to crust-mantle interaction. Evolution of sedimentary basins, passive continental margins, the Deccan Volcanic Province, Rajmahal traps and magmatic underplating are interpreted in terms of mantle plume activities using seismic images. Seismological data from Burmese arc region suggest an overturn of subducted Indian lithospheric slab at the transition zone (410–660 km depth) and its slow sinking leading to detachment. Further, remnants of detached lithospheric slabs from the Himalayan-Alps orogenic system are observed at various mantle depths ranging between 1000 and 2300 km beneath the Indian shield. Such displaced slab material pushes the other material to rise somewhere and thereby generate plumes/super plumes. These plumes break the supercontinent, which in turn cause plate movements on the surface. Tomographic studies suggest whole-mantle convection and provide key evidences for the mantle processes. The role of both the internal and external geological processes that shape the Earth are explained from the evolution of Himalayas and generation of huge sediments from it with the formation of world’s largest Bengal fan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DL (2007) New theory of the Earth (2nd edn). Cambridge University Press. doi https://doi.org/10.1017/CBO9781139167291

  • Arora BR, Prajapati SK, Reddy CD (2014) Geophysical constraints on seismotectonics of the Sikkim Himalaya. Bull Seis Soc Am 104(5):2278–2287

    Article  Google Scholar 

  • BABEL Working Group (1990) Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic Shield. Nature 348:34–38

    Article  Google Scholar 

  • Basu AR, Renne PR, Dasgupta DK et al (1993) Early and late igneous pluses and a high-3 He plume origin for the Deccan flood basalts. Science 261:902–906

    Article  Google Scholar 

  • Bhattacharji S, Chatterji N, Wampler JM et al (1996) Indian intraplate and continental margin rifting, lithospheric extension and mantle plume upwelling in Deccan flood basalt volcanism near the K/T boundary: evidence from mafic dike swarms. J Geology 104:379–398

    Article  Google Scholar 

  • Bhushan SK, Kumar A (2013) First carbonate hosted REE deposit from India. J Geol Soc India 81:41–60

    Article  Google Scholar 

  • Bijwaard HW, Spakman W, Engdahl ER (1998) Closing the gap between regional and global travel time tomography. J Geophy Res 103:30055–30078

    Article  Google Scholar 

  • Biswas SK (1987) Regional tectonic framework, structure and evolution of the western margin basins of India. Tectonophysics 135:307–327

    Article  Google Scholar 

  • Blaustein R (2016) The great oxidation event. Bioscience 66:189–195

    Article  Google Scholar 

  • Burke K, Dewey JF (1973) Plume-generated triple junction: key indicators in applying plate tectonics to old rocks. J Geology 81:406–433

    Article  Google Scholar 

  • Calvert AJ, Sawer EW, Davis WJ et al (1995) Archaean subduction inferred from seismic images of mantle suture in the superior provinces. Nature 375:670–674

    Article  Google Scholar 

  • Carbonell R, Levander A, Kind R (2013) The mohorovicic discontinuity beneath the continental crust: an overview of seismic constraints. Tectonophysics 609:353–376

    Article  Google Scholar 

  • Catchings RD, Mooney WD (1988) Crustal structure of the Columbia plateau: evidence for continental rifting. J Geophy Res 93:459–474

    Article  Google Scholar 

  • Chen WP, Yang ZH (2004) Earthquakes beneath the Himalayas and Tibet: evidence for strong lithosphere mantle. Science 304:1949–1952

    Article  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophy Res 100:9761–9788

    Article  Google Scholar 

  • Cook FA (2002) Fine structure of the continental reflection Moho. Geol Soc Am Bull 114:64–79

    Article  Google Scholar 

  • Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions and external consequences. Rev Geophy 32:1–36

    Article  Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Plant Sci Lett 163:97–108

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J et al (2003) Three distinct types hotspots in the Earth’s mantle. Earth Plant Sci Lett 205:295–308

    Article  Google Scholar 

  • Cox KG (1989) The role of mantle plumes in the development of continental drainage patterns. Nature 342:873–876

    Article  Google Scholar 

  • Curray JR, Emmel FJ, Moore DG (2002) The Bengal fan: morphology, geometry, stratigraphy, history and processes. Mar Pet Geol 19:1191–1223

    Article  Google Scholar 

  • Damodara N, Vijaya Rao V, Sain K et al (2017) Basement configuration of the West Bengal sedimentary basin, India as revealed by seismic refraction tomography. Geophys J Int 208:1490–1507

    Article  Google Scholar 

  • Davis WJ (1997) U-Pb zircon and rutile ages from granulite xenoliths in the Slave province: evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms. Geology 25:343–346

    Article  Google Scholar 

  • Deemer SJ, Hurich CA (1994) The reflectivity of magmatic underplating using the layered mafic intrusion analog. Tectonophysics 232:239–255

    Article  Google Scholar 

  • Dewey JF, Bird JM (1970) Mountain belts and new global tectonics. J Geophy Res 75:2625–2647

    Article  Google Scholar 

  • Dewey JF (1988) Extensional collapse of orogens. Tectonics 7:1123–1140

    Article  Google Scholar 

  • Duncan RA, Richards MA (1991) Hotspots, mantle plumes, flood basalts and true polar wander. Rev Geophy 29:31–50

    Article  Google Scholar 

  • de Wit MJ (1998) On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precam Res 91:181–226

    Article  Google Scholar 

  • Dhuime B, Hawkesworth CJ, Cawood PA et al (2012) A change in geodynamics of continental growth 3 billion years ago. Science 335:1334–1336

    Article  Google Scholar 

  • Ernst WG (2007) Speculations on evolution of the terrestrial lithosphere-asthenosphere system—plumes and plates. Gondwana Res 11:38–49

    Article  Google Scholar 

  • French JE, Heaman LM (2010) Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: implications for the existence of the Neoarchean supercraton Sclavia. Precam Res 183:416–441

    Article  Google Scholar 

  • Fukao Y, Obayashi M, Nakakuki T, Deep Slab Project Group (2009) Stagnant slab: a review. Annu Rev Earth Planet Inter 173:197–206

    Google Scholar 

  • Fukao Y, Obayashi M (2013) Subducted slabs stagnant above, oenetrating through and trapped below the 660 km discontinuity. J Geophy Res 118:5920–5938

    Article  Google Scholar 

  • Fyfe WS (1993) Hot spots, magma underplating and modification of continental crust. Can J Earth Sci 30:908–912

    Article  Google Scholar 

  • Gaina C, Muller RD, Brown B et al (2007) Breakup and early seafloor spreading between India and Antarctica. Geophys J Int 170:151–169

    Article  Google Scholar 

  • Gao R, Lu Z, Klemperer SL et al (2016) Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat Geosci 9:555–560

    Article  Google Scholar 

  • Garnero EJ, McNamara AK, Sim SH (2016) Continental-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat Geosci 9:481–489

    Article  Google Scholar 

  • Gurnis M (1988) Large-scale mantle convection and aggregation and dispersal of supercontinents. Nature 332:695–699

    Article  Google Scholar 

  • Halls HC, Kumar A, Srinivasan R et al (2007) Paleomagnetism and U-Pb geochronology of easterly trending Dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precam Res 155:47–68

    Article  Google Scholar 

  • Hoffman PF (1988) United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Ann Rev Earth Planet Sci 16:543–603

    Article  Google Scholar 

  • Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside out? Science 252:1409–1412

    Article  Google Scholar 

  • Kayal JR (2008) Microearthquake seismology and seismotectonics of south Asia. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8180-4

    Article  Google Scholar 

  • Kind R, Yuan X, Saul J et al (2002) Seismic images of crust and upper mantle beneath Tibet: evidences for Eurasian plate subduction. Science 298(5596):1219–1221

    Article  Google Scholar 

  • Krishna VG, Rao V (2011) Velocity modelling of a complex deep crustal structure across the Meso-Proterozoic south Delhi fold belt, NW India, from joint interpretation of coincident seismic wide-angle and near-offset reflection data–an approach by utilizing unusual reflections in wide-angle records. J Geophy Res 116:B01307. https://doi.org/10.1029/2009JB006660

    Article  Google Scholar 

  • Kumar P, Yuan X, Kind R et al (2006) Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. J Geophy Res 111(B6):10:1029/2005JB003930

    Google Scholar 

  • Kumar P, Ravi Kumar M, Srijayanthi G et al (2013) Imaging the Lithosphere-asthenosphere boundary of the Indian plate using converted wave technique. J Geophy Res 118. https://doi.org/10.1002/jgrb.50366

  • LeCheminant AN, Heaman LM (1989) Mackenzie igneous events, Canada: middle Proteerozoic hotspot magmatism associated with ocean opening. Earth Planet Sci Lett 96:38–48

    Article  Google Scholar 

  • Lowe DR, Tice MM (2004) Geological evidence for Archean atmosphere and climate evolution: fluctuating levels of Co2, CH4, O2 with an overriding tectonic control. Geology 32:493–496

    Article  Google Scholar 

  • Mall DM, Rao VK, Reddy PR (1999) Deep sub-crustal features in the Bengal basin: seismic signatures from plume activity. Geophys Res Lett 26:2545–2548

    Article  Google Scholar 

  • Mandal B, Sen MK, Vijaya Rao V (2013) New seismic images of the Central Indian Suture Zone and their tectonic implications. Tectonics 32:1–14. https://doi.org/10.1002/tect.20055

    Article  Google Scholar 

  • Mandal B, Vijaya Rao V, Sarkar D et al (2018) Deep crustal seismic reflection images from the Dharwar craton, Southern India-evidence for the neoarchean subduction. Geophy J Int 212:777–794. https://doi.org/10.1093/gji/ggx427

    Article  Google Scholar 

  • Mao W, Zhang S (2018) Slab stagnation due to reduced viscosity layer beneath the mantle transition zone. Nat Geosci 11:876–881

    Article  Google Scholar 

  • Martin W, Baross J, Kelley D et al (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    Article  Google Scholar 

  • Meert JG, Torsvik TH (2003) The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375:261–288

    Article  Google Scholar 

  • Mezger K, Cosa MA (1999) The thermal history of the Eastern Ghats Belt (India) as revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals: implications for the SWEAT correlation. Precambr Res 94:251–271

    Article  Google Scholar 

  • Monsalve G, Sheehan A, Schulte-Pelkum V et al (2006) Seismicity and 1-dimentional velocity structure of the Himalayan collision zone: earthquake in the crust and upper mantle. J Geophy Res 111:B10301

    Article  Google Scholar 

  • Mooney WD, Meissner R (1992) Multi-genetic origin of crustal reflectivity: a review of seismic reflection profiling of the continental lower crust and Moho. In: Fountain DM, Arculus R, Kay RW (eds) Continental lower crust, Elsevier Publication Company

    Google Scholar 

  • Moyen HF, Stevens G, Kisters A (2006) Record of mid-Archean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442:559–562

    Article  Google Scholar 

  • Myers JS (1993) Precambrian history of west Australian craton and adjacent orogens. Ann Rev Earth Planet Sci 21:453–485

    Article  Google Scholar 

  • Nance RD, Murphy JB, Santosh M (2014) The supercontinent cycle: a retrospective essay. Gond Res 25:4–29

    Article  Google Scholar 

  • Nelson KD, Zhao W, Brown LD et al (1996) Partially molten middle crust beneath the southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1688

    Article  Google Scholar 

  • Pirajno F, Santosh M (2015) Mantle plumes, supercontinents, intracontinental rifting and mineral systems. Precambr Res 259:243–261

    Article  Google Scholar 

  • Purnachandra Rao N, Kalpana (2005) Deformation of the subducted Indian lithospheric slab in the Burmese arc. Geph Res Lett 32:L05301. https://doi.org/10.1029/2004GL022034

    Article  Google Scholar 

  • Rajendran CP, Rajendran K (2005) The status of central seismic gap: perspective based on the spatial and temporal aspects of the large Himalayan earthquakes. Tectonophysics 365:19–39

    Article  Google Scholar 

  • Raval U, Veeraswamy K (2000) The radial and linear modes of interaction between mantle plume and continental lithosphere: a case study from western India. J Geol Soc India 56:525–536

    Google Scholar 

  • Reddy PR, Vijaya Rao V (2013) Seismic images of the continental Moho of the Indian shield. In: Artemieva I, Brown L, Kennett BLN, Thybo H (eds) Moho: 100 years after Andrija Mohorovicic, Tectonophysics 609:217–233

    Google Scholar 

  • Reddy PR, Rajendra Prasad B, Vijaya Rao V et al (2003) Deep seismic reflection and refraction/Wide-angle reflection studies along Kuppam-Palani transect in southern granulite terrain of India. In: Ramakrishnan M (ed) Tectonics of southern granulite terrain, Kuppam-Palani geotransect, Geol Soc India Mem 50:79–106

    Google Scholar 

  • Rogers JJW (1996) A history of continents in the past three billion years. J Geol 104:91–107

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2004) Continents and supercontinents. Oxford University Press, 289

    Google Scholar 

  • Sapin M, Hirn A (1997) Seismic structure and evidence for eclogitization during the Himalayan convergence. Tectonophysics 273:1–16

    Article  Google Scholar 

  • Santosh M, Maruyama S, Sawaki Y et al (2014) The Cambrian explosion: plume driven birth of the second ecosystem on Earth. Gonndwana Res 25:945–965

    Article  Google Scholar 

  • Sridhar AR, Tewari HC (2001) Existence of a sedimentary graben in the western part of Narmada zone: seismic evidence. J Geodynamics 31:19–31

    Article  Google Scholar 

  • Sridhar AR, Tewari HC, Vijaya Rao V et al (2007) Crustal velocity structure of the Narmada-Son lineament along the Thuadara-Sendhwa-Sinddad profile in the NW part of central India and its geodynamic implicartions. J Geol Soc India 69:1147–1160

    Google Scholar 

  • Smithies RH, Champion DC, Van kranendonk MJ, et al (2005) Modern style subduction processes in Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth Planet Sci Lett 231:221–237

    Article  Google Scholar 

  • Sobolev S, Brown M (2019) Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 570:52–59

    Article  Google Scholar 

  • Storey BC (1995) The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377:301–308

    Article  Google Scholar 

  • Tewari HC, Dixit MM, Rao NM et al (1997) Crustal thickening under the Paleo/Mesoproterozoic Delhi fold belt in NW India: evidence from deep reflection profiling. Geophys J Int 129:657–668

    Article  Google Scholar 

  • Torsvik TH, Smethurst MA, Burke K et al (2006) Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys J Int 167:1447–1460. https://doi.org/10.1111/j.1365-246X.2006

    Article  Google Scholar 

  • Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–407

    Google Scholar 

  • Van der Hilst RD, Widiyantoro S, Engdahl ER (1997) Evidence for deep mantle circulation from global tomography. Nature 386:578–584

    Article  Google Scholar 

  • Van der Meer DG, van Hinsbergen DJJ, Spakman W (2018) Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723:309–448

    Article  Google Scholar 

  • van der Velden AJ, Cook FA (2005) Relict subduction zones in Canada. J Geophy Res 110. https://doi.org/10.1029/2004JB003333

  • Van der Voo R, Spakman W, Bijwaard H (1999) Tethyan subducted slabs under India. Earth Plant Sci Lett 171:7–20

    Article  Google Scholar 

  • Vijaya Kumar K, Ernst WG, Leelanandam C et al (2010) First Paleoproterozoic ophiolite from Gondwana: geochronologic-geochemical documentation of ancient oceanic crust from Kandra, SE India. Tectonophysics 487:22–32

    Article  Google Scholar 

  • Vijaya Rao V, Rajendra Prasad B, Reddy PR et al (2000) Evolution of proterozoic Aravalli Delhi fold belt in the northwestern Indian shield from seismic studies. Tectonophysics 327:109–130

    Article  Google Scholar 

  • Vijaya Rao V, Reddy PR (2002) A mesoproterozoic supercontinent: evidence from the Indian Shield. In: Rogers JJW, Santosh M (eds) Special volume on mesoproterozoic supercontinent, Gondwana Research 5:63–74

    Google Scholar 

  • Vijaya Rao V, Sain K, Reddy PR et al (2006) Crustal structure and tectonics of the northern part of the Southern granulite Terrain, India. Earth Planet Sci Lett 251:90–103

    Article  Google Scholar 

  • Vijaya Rao V, Rajendra Prasad B (2006) Structure and evolution of the Cauvery shear zone system, southern granulite terrain, India: evidence from deep seismic and other geophysical studies. Gondwana Res 10:29–40

    Article  Google Scholar 

  • Vijaya Rao V (2009) Geodynamics of the collision zones: phases of lithospheric evolution from the Indian Shield. In: Arora BR, Sharma R (eds) Geodynamics of the collision zones. J Geol Soc India Memoir 72: pp165–194

    Google Scholar 

  • Vijaya Rao V, Reddy PR (2009) Deep crustal seismic images of the southern granulite terrain, India. In: Reddy PR (ed) Seismic imaging of the Indian continental and oceanic crust. Professional Books Publishers, Chennai, pp 297–323

    Google Scholar 

  • Vijaya Rao V, Khare P, Raju S et al (2011) Deep crustal seismic probing of the Dharwar craton by DHARSEIS Experiment. DST Newsletter 21(2):5–10

    Google Scholar 

  • Vijaya Rao V, Krishna VG (2013) Evidence for the Neoproterozoic Phulad suture zone and genesis of Malani magmatism in the NW India from deep seismic images: implications for assembly and breakup of the Rodinia. Tectonophysics 589:172–185

    Article  Google Scholar 

  • Vijaya Rao V, Murty ASN, Sarkar D et al (2015) Crustal velocity structure of the neoarchean convergence zone between the eastern and western blocks of Dharwar Craton, India from seismic wide-angle studies. Precambr Res 266:282–295

    Article  Google Scholar 

  • Yuan K, Romanowicz B (2017) Seismic evidence for partial melting at the root of major hot spot plumes. Science 357:393–397

    Article  Google Scholar 

  • Zhao D (2004) Global tomographic images of mantle plumes and subducting slabs: insight into deep earth dynamics. Phy Earth Planet Inter 146:3–34

    Article  Google Scholar 

  • Zhao D (2007) Seismic images under 60 hotspots: search for mantle plumes. Gondwana Res 12:335–355

    Article  Google Scholar 

  • Zhao W, Nelson KD, Project INDEPTH Team (1993) Deep seismic reflection evidence for continental underthrusting beneath the Tibet. Nature 366:557–559

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA et al (2004) A paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sci Rev 6:91–123

    Article  Google Scholar 

Download references

Acknowledgements

We thank V.M. Tiwari, Director, NGRI for providing the facilities, encouragement and permission to publish the work (vide reference no: NGRI/Lib/2021/Pub-25 and contribution towards MLP-6402-28(PK)) and Prof. Vinod K. Singh for his invitation to contribute the research article. We also thank W.D. Mooney and Ramon Carbonell for their useful suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, V.V., Nara, D. (2021). Structure and Geological Processes of the Earth: Seismic Evidences from the Indian Shield. In: Shandilya, A.K., Singh, V.K., Bhatt, S.C., Dubey, C.S. (eds) Geological and Geo-Environmental Processes on Earth. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-16-4122-0_5

Download citation

Publish with us

Policies and ethics