Skip to main content

MOF Derivatives

  • Chapter
  • First Online:
Nano/Micro Metal-Organic Frameworks
  • 635 Accesses

Abstract

Metal–organic frameworks (MOFs) are a family of crystalline porous materials with metal/metal cluster nodes and organic linkers forming coordinating framework structures. Thanks to their merits of crystalline porous structures and diverse chemical compositions, MOFs can be converted into a variety of functional derivatives after thermal or chemical treatments under different conditions. These MOF derivatives do not just partially inherit the structural and compositional merits of their MOF precursors but also demonstrate even more attractive physical and chemical properties, which can help to improve their performance or develop new functions. Herein, this chapter provides a comprehensive review of MOF-derived materials, mainly focusing on MOF-derived porous carbon and MOF-derived metal compounds. Their design and synthesis strategies are also summarised and demonstrated by highlighted examples from earlier research works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444. https://doi.org/10.1126/science.1230444

    Article  CAS  PubMed  Google Scholar 

  2. Zhu B, Liang Z, Xia D, Zou R (2019) Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Mater 23:757–771. https://doi.org/10.1016/j.ensm.2019.05.022

    Article  Google Scholar 

  3. Zhu B, Zou R, Xu Q (2018) Metal-organic framework based catalysts for hydrogen evolution. Adv Energy Mater 8(24):1801193. https://doi.org/10.1002/aenm.201801193

    Article  CAS  Google Scholar 

  4. Xu G, Nie P, Dou H, Ding B, Li L, Zhang X (2017) Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Mater Today 20(4):191–209. https://doi.org/10.1016/j.mattod.2016.10.003

    Article  CAS  Google Scholar 

  5. Langmi HW, Ren J, North B, Mathe M, Bessarabov D (2014) Hydrogen storage in metal-organic frameworks: a review. Electrochim Acta 128:368–392. https://doi.org/10.1016/j.electacta.2013.10.190

    Article  CAS  Google Scholar 

  6. Yang W, Li X, Li Y, Zhu R, Pang H (2019) Applications of metal–organic-framework-derived carbon materials. Adv Energy Mater 31(6):1804740. https://doi.org/10.1002/adma.201804740

    Article  CAS  Google Scholar 

  7. Qi L, Tang X, Wang Z, Peng X (2017) Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int J Min Sci Technol 27(2):371–377. https://doi.org/10.1016/j.ijmst.2017.01.005

    Article  CAS  Google Scholar 

  8. Rodríguez-Reinoso F, Sepúlveda-Escribano A (2001) Chapter 9: porous carbons in adsorption and catalysis. In: Nalwa HS (ed) Handbook of surfaces and interfaces of materials. Academic Press, Burlington, pp 309–355

    Google Scholar 

  9. Yang X-Y, Chen L-H, Li Y, Rooke JC, Sanchez C, Su B-L (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46(2):481–558. https://doi.org/10.1039/C6CS00829A

    Article  CAS  PubMed  Google Scholar 

  10. Yilmaz G, Peh SB, Zhao D, Ho GW (2019) Atomic- and molecular-level design of functional metal–organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci 6(21):1901129. https://doi.org/10.1002/advs.201901129

    Article  CAS  Google Scholar 

  11. Liang Z, Qu C, Xia D, Zou R, Xu Q (2018) Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew Chem Int Ed 57(31):9604–9633. https://doi.org/10.1002/anie.201800269

    Article  CAS  Google Scholar 

  12. Ejaz A, Jeon S (2018) The individual role of pyrrolic, pyridinic and graphitic nitrogen in the growth kinetics of Pd NPs on N-rGO followed by a comprehensive study on ORR. Int J Hydrogen Energy 43(11):5690–5702. https://doi.org/10.1016/j.ijhydene.2017.12.184

    Article  CAS  Google Scholar 

  13. Zhu B, Xia D, Zou R (2018) Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coord Chem Rev 376:430–448. https://doi.org/10.1016/j.ccr.2018.07.020

    Article  CAS  Google Scholar 

  14. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2(40):16811–16831. https://doi.org/10.1039/C4TA02984D

    Article  CAS  Google Scholar 

  15. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Nat Acad Sci USA 103(27):10186–10191. https://doi.org/10.1073/pnas.0602439103%JProceedingsoftheNationalAcademyofSciences

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6(5):1887–1899. https://doi.org/10.1039/C7TA08268A

    Article  CAS  Google Scholar 

  17. Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223. https://doi.org/10.1016/j.matlet.2012.05.077

    Article  CAS  Google Scholar 

  18. Xia W, Zhu J, Guo W, An L, Xia D, Zou R (2014) Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J Mater Chem A 2(30):11606–11613. https://doi.org/10.1039/C4TA01656D

    Article  CAS  Google Scholar 

  19. Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl M-M, Radnik J, Beller M (2017) MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 358(6361):326–332. https://doi.org/10.1126/science.aan6245%JScience

    Article  CAS  PubMed  Google Scholar 

  20. Zou F, Chen Y-M, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10(1):377–386. https://doi.org/10.1021/acsnano.5b05041

    Article  CAS  PubMed  Google Scholar 

  21. Yun R, Hong L, Ma W, Jia W, Liu S, Zheng B (2019) Fe/Fe2O3@N-dopped porous carbon: a high-performance catalyst for selective hydrogenation of nitro compounds. ChemCatChem 11(2):724–728. https://doi.org/10.1002/cctc.201801626

    Article  CAS  Google Scholar 

  22. Farisabadi A, Moradi M, Hajati S, Kiani MA, Espinos JP (2019) Controlled thermolysis of MIL-101(Fe, Cr) for synthesis of FexOy/porous carbon as negative electrode and Cr2O3/porous carbon as positive electrode of supercapacitor. Appl Surf Sci 469:192–203. https://doi.org/10.1016/j.apsusc.2018.11.053

    Article  CAS  Google Scholar 

  23. McNamara ND, Kim J, Hicks JC (2016) Controlling the pyrolysis conditions of microporous/mesoporous MIL-125 to synthesize porous, carbon-supported Ti catalysts with targeted Ti phases for the oxidation of dibenzothiophene. Energy Fuels 30(1):594–602. https://doi.org/10.1021/acs.energyfuels.5b01946

    Article  CAS  Google Scholar 

  24. Zong M, Huo S, Liu Y, Zhang X, Li K (2021) Hydrangea-like nitrogen-doped porous carbons derived from NH2-MIL-53(Al) for high-performance capacitive deionization. Sep Purif Technol 256:117818. https://doi.org/10.1016/j.seppur.2020.117818

    Article  CAS  Google Scholar 

  25. Cai J, Li Y, Zhang M, Li Z (2019) Cooperation in Cu-MOF-74-Derived Cu–Cu2O–C nanocomposites to enable efficient visible-light-initiated phenylacetylene coupling. Inorg Chem 58(12):7997–8002. https://doi.org/10.1021/acs.inorgchem.9b00733

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Wu J, Huang L, Gao J, Zhou H, Shi Y, Pan Q, Zhang G, Du Y, Liang W (2018) Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. J Mater Chem A 6(25):12115–12124. https://doi.org/10.1039/C8TA02036A

    Article  CAS  Google Scholar 

  27. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130(16):5390–5391. https://doi.org/10.1021/ja7106146

    Article  CAS  PubMed  Google Scholar 

  28. Tan J, He X, Yin F, Chen B, Liang X, Li G, Yin H (2020) Bimetallic ZnCo zeolitic imidazolate framework/polypyrrole-polyaniline derived Co/N-doped carbon for oxygen reduction reaction. Int J Hydrogen Energy 45(31):15453–15464. https://doi.org/10.1016/j.ijhydene.2020.04.018

    Article  CAS  Google Scholar 

  29. Meng Z, Cai S, Wang R, Tang H, Song S, Tsiakaras P (2019) Bimetallic−organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction. Appl Catal B 244:120–127. https://doi.org/10.1016/j.apcatb.2018.11.037

    Article  CAS  Google Scholar 

  30. Ding M, Shi W, Guo L, Leong ZY, Baji A, Yang HY (2017) Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. J Mater Chem A 5(13):6113–6121. https://doi.org/10.1039/C7TA00339K

    Article  CAS  Google Scholar 

  31. Gao Y, Zhu Y, Chen Z, Hu C (2020) Nitrogen-coordinated cobalt embedded in a hollow carbon polyhedron for superior catalytic oxidation of organic contaminants with peroxymonosulfate. ACS ES&T Eng 1:76–85. https://doi.org/10.1021/acsestengg.0c00039

  32. Huo Q, Li J, Qi X, Liu G, Zhang X, Zhang B, Ning Y, Fu Y, Liu J, Liu S (2019) Cu, Zn-embedded MOF-derived bimetallic porous carbon for adsorption desulfurization. Chem Eng J 378:122106. https://doi.org/10.1016/j.cej.2019.122106

    Article  CAS  Google Scholar 

  33. Yang Y, Mao K, Gao S, Huang H, Xia G, Lin Z, Jiang P, Wang C, Wang H, Chen Q (2018) O-, N-atoms-coordinated mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv Mater 30(28):1801732. https://doi.org/10.1002/adma.201801732

    Article  CAS  Google Scholar 

  34. Han X, Ling X, Yu D, Xie D, Li L, Peng S, Zhong C, Zhao N, Deng Y, Hu W (2019) Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv Mater 31(49):1905622. https://doi.org/10.1002/adma.201905622

    Article  CAS  Google Scholar 

  35. Zhu Q-L, Xia W, Zheng L-R, Zou R, Liu Z, Xu Q (2017) Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett 2(2):504–511. https://doi.org/10.1021/acsenergylett.6b00686

    Article  CAS  Google Scholar 

  36. Huang H, Shen K, Chen F, Li Y (2020) Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal 10(12):6579–6586. https://doi.org/10.1021/acscatal.0c01459

    Article  CAS  Google Scholar 

  37. Ren Q, Wang H, Lu X-F, Tong Y-X, Li G-R (2018) Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv Sci 5(3):1700515. https://doi.org/10.1002/advs.201700515

    Article  CAS  Google Scholar 

  38. Tang C, Zhang Q (2017) Nanocarbon for oxygen reduction electrocatalysis: dopants. Edges and Defects. 29(13):1604103. https://doi.org/10.1002/adma.201604103

    Article  CAS  Google Scholar 

  39. Wang X, Li Y (2016) Nanoporous carbons derived from MOFs as metal-free catalysts for selective aerobic oxidations. J Mater Chem A 4(14):5247–5257. https://doi.org/10.1039/C6TA00324A

    Article  CAS  Google Scholar 

  40. Yang L, Xu G, Ban J, Zhang L, Xu G, Lv Y, Jia D (2019) Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 535:415–424. https://doi.org/10.1016/j.jcis.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  41. Qian Y, Hu Z, Ge X, Yang S, Peng Y, Kang Z, Liu Z, Lee JY, Zhao D (2017) A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries. Carbon 111:641–650. https://doi.org/10.1016/j.carbon.2016.10.046

    Article  CAS  Google Scholar 

  42. Wang X, Li X, Ouyang C, Li Z, Dou S, Ma Z, Tao L, Huo J, Wang S (2016) Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. J Mater Chem A 4(24):9370–9374. https://doi.org/10.1039/C6TA03015G

    Article  CAS  Google Scholar 

  43. He F, Chen G, Zhou Y, Yu Y, Li L, Hao S, Liu B (2016) ZIF-8 derived carbon (C-ZIF) as a bifunctional electron acceptor and HER cocatalyst for g-C3N4: construction of a metal-free, all carbon-based photocatalytic system for efficient hydrogen evolution. J Mater Chem A 4(10):3822–3827. https://doi.org/10.1039/C6TA00497K

    Article  CAS  Google Scholar 

  44. Zhang P, Sun F, Xiang Z, Shen Z, Yun J, Cao D (2014) ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ Sci 7(1):442–450. https://doi.org/10.1039/C3EE42799D

    Article  CAS  Google Scholar 

  45. Wu M, Wang K, Yi M, Tong Y, Wang Y, Song S (2017) A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species. ACS Catal 7(9):6082–6088. https://doi.org/10.1021/acscatal.7b01649

    Article  CAS  Google Scholar 

  46. Pan B, Zhu X, Wu Y, Liu T, Bi X, Feng K, Han N, Zhong J, Lu J, Li Y, Li Y (2020) Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon. Adv Sci 7(16):2001002. https://doi.org/10.1002/advs.202001002

    Article  CAS  Google Scholar 

  47. Zhao X, Yang H, Jing P, Shi W, Yang G, Cheng P (2017) A metal-organic framework approach toward highly nitrogen-doped graphitic carbon as a metal-free photocatalyst for hydrogen evolution. Small 13(9):1603279. https://doi.org/10.1002/smll.201603279

    Article  CAS  Google Scholar 

  48. Liu Y, Miao W, Fang X, Tang Y, Wu D, Mao S (2020) MOF-derived metal-free N-doped porous carbon mediated peroxydisulfate activation via radical and non-radical pathways: Role of graphitic N and CO. Chem Eng J 380:122584. https://doi.org/10.1016/j.cej.2019.122584

    Article  CAS  Google Scholar 

  49. Yang M, Zhang Y, Jian J, Fang L, Li J, Fang Z, Yuan Z, Dai L, Chen X, Yu D (2019) Donor-acceptor nanocarbon ensembles to boost metal-free All-pH hydrogen evolution catalysis by combined surface and dual electronic modulation. Angew Chem Int Ed 58(45):16217–16222. https://doi.org/10.1002/anie.201907826

    Article  CAS  Google Scholar 

  50. Gadipelli S, Li Z, Zhao T, Yang Y, Yildirim T, Guo Z (2017) Graphitic nanostructures in a porous carbon framework significantly enhance electrocatalytic oxygen evolution. J Mater Chem A 5(47):24686–24694. https://doi.org/10.1039/C7TA03027D

    Article  CAS  Google Scholar 

  51. Li Y, Xu Y, Yang W, Shen W, Xue H, Pang H (2018) MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14(25):1704435. https://doi.org/10.1002/smll.201704435

    Article  CAS  Google Scholar 

  52. Liang Q, Chen J, Wang F, Li Y (2020) Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 424:213488. https://doi.org/10.1016/j.ccr.2020.213488

    Article  CAS  Google Scholar 

  53. Li Z, Zheng Y, Liu Q, Wang Y, Wang D, Li Z, Zheng P, Liu Z (2020) Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. J Mater Chem A 8(37):19113–19132. https://doi.org/10.1039/D0TA06533A

    Article  CAS  Google Scholar 

  54. Li T, Bai Y, Wang Y, Xu H, Jin H (2020) Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev 410:213221. https://doi.org/10.1016/j.ccr.2020.213221

    Article  CAS  Google Scholar 

  55. Xu X, Liu J, Liu J, Ouyang L, Hu R, Wang H, Yang L, Zhu M (2018) Na-ion batteries: a general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries (Adv. Funct. Mater. 16/2018). Adv Funct Mater 28(16):1870108. https://doi.org/10.1002/adfm.201870108

    Article  CAS  Google Scholar 

  56. Li X, Ao Z, Liu J, Sun H, Rykov AI, Wang J (2016) Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts. ACS Nano 10(12):11532–11540. https://doi.org/10.1021/acsnano.6b07522

    Article  CAS  PubMed  Google Scholar 

  57. Yu C, Wang Y, Cui J, Yu D, Zhang X, Shu X, Zhang J, Zhang Y, Vajtai R, Ajayan Pulickel M, Wu Y (2018) MOF-74 derived porous hybrid metal oxide hollow nanowires for high-performance electrochemical energy storage. J Mater Chem A 6(18):8396–8404. https://doi.org/10.1039/C8TA01426D

    Article  CAS  Google Scholar 

  58. Joo J, Kim T, Lee J, Choi S-I, Lee K (2019) Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater 31(14):1806682. https://doi.org/10.1002/adma.201806682

    Article  CAS  Google Scholar 

  59. Pieraggi B (2008) Diffusion and solid state reactions. In: Gao W, Li Z (eds) Developments in high temperature corrosion and protection of materials. Woodhead Publishing, Cambridge, UK, pp 9–35

    Google Scholar 

  60. Zhou J, Dou Y, Zhou A, Shu L, Chen Y, Li J-R (2018) Layered metal-organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett 3(7):1655–1661. https://doi.org/10.1021/acsenergylett.8b00809

    Article  CAS  Google Scholar 

  61. Zhang L, Wu HB, Madhavi S, Hng HH, Lou XW (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J Am Chem Soc 134(42):17388–17391. https://doi.org/10.1021/ja307475c

    Article  CAS  PubMed  Google Scholar 

  62. Wang B, Han Y, Wang X, Bahlawane N, Pan H, Yan M, Jiang Y (2018) Prussian blue analogs for rechargeable batteries. iScience 3:110–133. https://doi.org/10.1016/j.isci.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu Y, Zheng S, Tang H, Guo X, Xue H, Pang H (2017) Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater 9:11–30. https://doi.org/10.1016/j.ensm.2017.06.002

    Article  Google Scholar 

  64. Hurlbutt K, Wheeler S, Capone I, Pasta M (2018) Prussian blue analogs as battery materials. Joule 2(10):1950–1960. https://doi.org/10.1016/j.joule.2018.07.017

    Article  CAS  Google Scholar 

  65. Fan G, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43(20):7040–7066. https://doi.org/10.1039/C4CS00160E

    Article  CAS  PubMed  Google Scholar 

  66. Yilmaz G, Yam KM, Zhang C, Fan HJ, Ho GW (2017) Situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv Master 29(26):1606814. https://doi.org/10.1002/adma.201606814

    Article  CAS  Google Scholar 

  67. Zhao M, Zhao Q, Li B, Xue H, Pang H, Chen C (2017) Recent progress in layered double hydroxide based materials for electrochemical capacitors: design, synthesis and performance. Nanoscale 9(40):15206–15225. https://doi.org/10.1039/C7NR04752E

    Article  CAS  PubMed  Google Scholar 

  68. Cai M, Liu Q, Xue Z, Li Y, Fan Y, Huang A, Li M-R, Croft M, Tyson TA, Ke Z, Li G (2020) Constructing 2D MOFs from 2D LDHs: a highly efficient and durable electrocatalyst for water oxidation. J Mater Chem A 8(1):190–195. https://doi.org/10.1039/C9TA09397D

    Article  CAS  Google Scholar 

  69. Zhang B, Qi Z, Wu Z, Lui YH, Kim T-H, Tang X, Zhou L, Huang W, Hu S (2019) Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett 4(1):328–336. https://doi.org/10.1021/acsenergylett.8b02343

    Article  CAS  Google Scholar 

  70. Zhang L, Wu HB, Lou XW (2013) Metal–Organic-frameworks-derived general formation of hollow structures with high complexity. J Am Chem Soc 135(29):10664–10672. https://doi.org/10.1021/ja401727n

    Article  CAS  PubMed  Google Scholar 

  71. Callejas JF, Read CG, Roske CW, Lewis NS, Schaak RE (2016) Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem Mater 28(17):6017–6044. https://doi.org/10.1021/acs.chemmater.6b02148

    Article  CAS  Google Scholar 

  72. Yang Y, Zhou C, Wang W, Xiong W, Zeng G, Huang D, Zhang C, Song B, Xue W, Li X, Wang Z, He D, Luo H, Ouyang Z (2021) Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem Eng J 405:126547. https://doi.org/10.1016/j.cej.2020.126547

    Article  CAS  Google Scholar 

  73. Chu W, Hou Y, Liu J, Bai X, Yf G, Cao Z (2020) Zn-Co phosphide porous nanosheets derived from metal-organic-frameworks as battery-type positive electrodes for high-performance alkaline supercapacitors. Electrochim Acta 364:137063. https://doi.org/10.1016/j.electacta.2020.137063

    Article  CAS  Google Scholar 

  74. Xiao X, He C-T, Zhao S, Li J, Lin W, Yuan Z, Zhang Q, Wang S, Dai L, Yu D (2017) A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ Sci 10(4):893–899. https://doi.org/10.1039/C6EE03145E

    Article  CAS  Google Scholar 

  75. Liu X, Li W, Zhao X, Liu Y, Nan C-W, Fan L-Z (2019) two birds with one stone: metal-organic framework derived micro-/nanostructured Ni2P/Ni hybrids embedded in porous carbon for electrocatalysis and energy storage. Adv Funct Mater 29(35):1901510. https://doi.org/10.1002/adfm.201901510

    Article  CAS  Google Scholar 

  76. He P, Yu X-Y, Lou XW (2017) Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew Chem Int Ed 56(14):3897–3900. https://doi.org/10.1002/anie.201612635

    Article  CAS  Google Scholar 

  77. Guan C, Xiao W, Wu H, Liu X, Zang W, Zhang H, Ding J, Feng YP, Pennycook SJ, Wang J (2018) Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 48:73–80. https://doi.org/10.1016/j.nanoen.2018.03.034

    Article  CAS  Google Scholar 

  78. Wang X, Chai L, Ding J, Zhong L, Du Y, Li T-T, Hu Y, Qian J, Huang S (2019) Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy 62:745–753. https://doi.org/10.1016/j.nanoen.2019.06.002

    Article  CAS  Google Scholar 

  79. Qian J, Wang X, Chai L, Liang L-F, Li T-T, Hu Y, Huang S (2018) Robust cage-based zinc-organic frameworks derived dual-doped carbon materials for supercapacitor. Cryst Growth Des 18(4):2358–2364. https://doi.org/10.1021/acs.cgd.7b01765

    Article  CAS  Google Scholar 

  80. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6(12):8069–8097. https://doi.org/10.1021/acscatal.6b02479

    Article  CAS  Google Scholar 

  81. Zou H, He B, Kuang P, Yu J, Fan K (2018) Metal-organic framework-derived nickel-cobalt sulfide on ultrathin mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl Mater Interfaces 10(26):22311–22319. https://doi.org/10.1021/acsami.8b06272

    Article  CAS  PubMed  Google Scholar 

  82. Shao M, Cheng Y, Zhang T, Li S, Zhang W, Zheng B, Wu J, Xiong W-W, Huo F, Lu J (2018) Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Appl Mater Interfaces 10(39):33097–33104. https://doi.org/10.1021/acsami.8b10110

    Article  CAS  PubMed  Google Scholar 

  83. Zhao J-Y, Wang R, Wang S, Lv Y-R, Xu H, Zang S-Q (2019) Metal–organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J Mater Chem A 7(13):7389–7395. https://doi.org/10.1039/C8TA12116H

    Article  CAS  Google Scholar 

  84. Yu X-Y, Yu L, Wu HB, Lou XW (2015) Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem 54(18):5331–5335. https://doi.org/10.1002/anie.201500267

    Article  CAS  Google Scholar 

  85. Dong S, Li C, Ge X, Li Z, Miao X, Yin L (2017) ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 11(6):6474–6482. https://doi.org/10.1021/acsnano.7b03321

    Article  CAS  PubMed  Google Scholar 

  86. Xia X, Wang L, Sui N, Colvin VL, Yu WW (2020) Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 12(23):12249–12262. https://doi.org/10.1039/D0NR02939D

    Article  CAS  PubMed  Google Scholar 

  87. Luo M, Yu H, Hu F, Liu T, Cheng X, Zheng R, Bai Y, Shui M, Shu J (2020) Metal selenides for high performance sodium ion batteries. Chem Eng J 380:122557. https://doi.org/10.1016/j.cej.2019.122557

    Article  CAS  Google Scholar 

  88. Yuan J, Liu W, Zhang X, Zhang Y, Yang W, Lai W, Li X, Zhang J, Li X (2020) MOF derived ZnSe–FeSe2/RGO Nanocomposites with enhanced sodium/potassium storage. J Power Sources 455:227937. https://doi.org/10.1016/j.jpowsour.2020.227937

    Article  CAS  Google Scholar 

  89. Etteieb S, Magdouli S, Zolfaghari M, Brar S (2020) Monitoring and analysis of selenium as an emerging contaminant in mining industry: a critical review. Sci Total Environ 698:134339. https://doi.org/10.1016/j.scitotenv.2019.134339

    Article  CAS  PubMed  Google Scholar 

  90. Yang X, Wang S, Yu DYW, Rogach AL (2019) Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy 58:392–398. https://doi.org/10.1016/j.nanoen.2019.01.064

    Article  CAS  Google Scholar 

  91. Wang H, Li J, Li K, Lin Y, Chen J, Gao L, Nicolosi V, Xiao X, Lee J-M (2021) Transition metal nitrides for electrochemical energy applications. Chem Soc Rev. https://doi.org/10.1039/D0CS00415D

    Article  PubMed  Google Scholar 

  92. Feng X, Wang H, Bo X, Guo L (2019) Bimetal-organic framework-derived porous rodlike cobalt/nickel nitride for all-pH value electrochemical hydrogen evolution. ACS Appl Mater Interfaces 11(8):8018–8024. https://doi.org/10.1021/acsami.8b21369

    Article  CAS  PubMed  Google Scholar 

  93. Hu S, Wang S, Feng C, Wu H, Zhang J, Mei H (2020) Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation. ACS Sustain Chem Eng 8(19):7414–7422. https://doi.org/10.1021/acssuschemeng.0c01450

    Article  CAS  Google Scholar 

  94. Liu X, Zang W, Guan C, Zhang L, Qian Y, Elshahawy AM, Zhao D, Pennycook SJ, Wang J (2018) Ni-doped cobalt-cobalt nitride heterostructure arrays for high-power supercapacitors. ACS Energy Lett 3(10):2462–2469. https://doi.org/10.1021/acsenergylett.8b01393

    Article  CAS  Google Scholar 

  95. Lai J, Huang B, Chao Y, Chen X, Guo S (2019) Strongly coupled nickel-cobalt nitrides/carbon hybrid nanocages with Pt-like activity for hydrogen evolution catalysis. Adv Mater 31(2):1805541. https://doi.org/10.1002/adma.201805541

    Article  CAS  Google Scholar 

  96. Chen Z, Ha Y, Liu Y, Wang H, Yang H, Xu H, Li Y, Wu R (2018) In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting. ACS Appl Mater Interfaces 10(8):7134–7144. https://doi.org/10.1021/acsami.7b18858

    Article  CAS  PubMed  Google Scholar 

  97. Kang BK, Im SY, Lee J, Kwag SH, Kwon SB, Tiruneh S, Kim M-J, Kim JH, Yang WS, Lim B, Yoon DH (2019) In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res 12(7):1605–1611. https://doi.org/10.1007/s12274-019-2399-3

    Article  CAS  Google Scholar 

  98. Hu L, Hu Y, Liu R, Mao Y, Balogun MS, Tong Y (2019) Co-based MOF-derived Co/CoN/Co2P ternary composite embedded in N- and P-doped carbon as bifunctional nanocatalysts for efficient overall water splitting. Int J Hydrogen Energy 44(23):11402–11410. https://doi.org/10.1016/j.ijhydene.2019.03.157

    Article  CAS  Google Scholar 

  99. Wang L-F, Qiu J-Z, Wu S-G, Chen Y-C, Li C-J, Li Q-W, Liu J-L, Tong M-L (2018) Humidity sensitive structural dynamics and solvatomagnetic effects in a 3D Co(II)-based coordination polymer. Inorg Chem 57(7):4070–4076. https://doi.org/10.1021/acs.inorgchem.8b00235

    Article  CAS  PubMed  Google Scholar 

  100. Lai S, Xu L, Liu H, Chen S, Cai R, Zhang L, Theis W, Sun J, Yang D, Zhao X (2019) Controllable synthesis of CoN3 catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes. J Mater Chem A 7(38):21884–21891. https://doi.org/10.1039/C9TA08134H

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingjun Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, B. (2021). MOF Derivatives. In: Pang, H. (eds) Nano/Micro Metal-Organic Frameworks . Springer, Singapore. https://doi.org/10.1007/978-981-16-4071-1_2

Download citation

Publish with us

Policies and ethics