Skip to main content

Nano/Micro MOF-Based Materials

  • Chapter
  • First Online:
Nano/Micro Metal-Organic Frameworks
  • 751 Accesses

Abstract

Metal–organic frameworks are a class of functional porous materials. In recent years, metal–organic frameworks have become a hot research topic in the field of electrochemistry because of their high specific surface area, abundant pores, controllable morphology and versatility. In this review, one-dimensional, two- dimensional, hierarchical, hybrid metal–organic frameworks are briefly introduced. The multiscale control of metal–organic framework structure can be realized by designing reasonable synthetic routes. By combining metal-organic frameworks with a variety of functional materials, the chemical instability and poor conductivity of metal-organic frameworks can be overcome. Finally, based on the reported literature, we propose the future direction of metal–organic frameworks and metal–organic framework composites in the field of electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Serre C, Millange F, Thouvenot C, Nogue M, Loue D (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)] x [HO(2)C-C(6)H(4)-CO(2)H](x) x H(2)O(y). J Am Chem Soc 124(45):13519–13526. https://doi.org/10.1021/ja0276974

    Article  CAS  PubMed  Google Scholar 

  2. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375. https://doi.org/10.1002/anie.200300610

    Article  CAS  Google Scholar 

  3. Furukawa H, Cordova KE, Keeffe MO, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444. https://doi.org/10.1126/science.1230444

    Article  CAS  PubMed  Google Scholar 

  4. Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT (2017) Postsynthetic tuning of metal–organic frameworks for targeted applications. Acc Chem Res 50(4):805–813. https://doi.org/10.1021/acs.accounts.6b00577

    Article  CAS  PubMed  Google Scholar 

  5. Eustis SN, Radisic D, Bowen KH, Bachorz RA, Haranczyk M, Schenter GK, Gutowski M (2008) Electron-driven acid-base chemistry: proton transfer from hydrogen chloride to ammonia. Science 319(5865):936–939. https://doi.org/10.1126/science.1151614

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Xu Y, Yang W, Shen W, Xue H, Pang H (2018) MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14:1704435. https://doi.org/10.1002/smll.201704435

    Article  CAS  Google Scholar 

  7. Li W, Hu S, Luo X, Li Z, Sun X, Li M, Liu F, Yu Y (2017) Confined amorphous red phosphorus in MOF-derived n-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater 29:1605820. https://doi.org/10.1002/adma.201605820

    Article  CAS  Google Scholar 

  8. Liu B, Shioyama H, Jiang H, Zhang X, Xu Q (2010) Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon N Y 48:456–463. https://doi.org/10.1016/j.carbon.2009.09.061

    Article  CAS  Google Scholar 

  9. Han Y, Qi P, Zhou J, Feng X, Li S, Fu X, Zhao J, Yu D, Wang B (2015) Metal-organic frameworks (MOFs) as sandwich coating cushion for silicon anode in lithium ion batteries. ACS Appl Mater Interfaces 7:26608–26613. https://doi.org/10.1021/acsami.5b08109

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, McGuirk CM, d’Aquino A, Mason JA, Mirkin CA (2018) Metal-organic framework nanoparticles. Adv Mater 30:1–14. https://doi.org/10.1002/adma.201800202

    Article  CAS  Google Scholar 

  11. Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378:703–706. https://doi.org/10.1038/378703a0

    Article  CAS  Google Scholar 

  12. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279. https://doi.org/10.1038/46248

    Article  CAS  Google Scholar 

  13. Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I (2004) A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew Chem 116:6456–6461. https://doi.org/10.1002/ange.200460592

    Article  Google Scholar 

  14. Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127:1504–1518. https://doi.org/10.1021/ja045123o

    Article  CAS  PubMed  Google Scholar 

  15. Furukawa H, Keeffe MO, Hayashi H, Ot APC, Yaghi OM (2007) Zeolite A imidazolate frameworks. Nat Mater 6(7):501–506. https://doi.org/10.1038/nmat1927

    Article  CAS  PubMed  Google Scholar 

  16. Huang X, Tan C, Yin Z, Zhang H (2014) 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv Mater 26(14):2185–2204. https://doi.org/10.1002/adma.201304964

    Article  CAS  PubMed  Google Scholar 

  17. Leela A, Reddy M, Gowda SR, Shaijumon MM, Ajayan PM (2012) Hybrid nanostructures for energy storage applications. Adv Mater 24(37):5045–5064. https://doi.org/10.1002/adma.201104502

    Article  CAS  Google Scholar 

  18. Jingling M, Fengzhang R, Guangxin W, Yi X, Yaqiong L, Jiuba W (2017) Electrochemical performance of melt-spinning Al–Mg–Sn based anode alloys. Int J Hydrogen Energy 42:11654–11661. https://doi.org/10.1016/j.ijhydene.2017.02.185

    Article  CAS  Google Scholar 

  19. Zhao J, Wei C, Pang H (2015) Zeolitic imidazolate framework-67 rhombic dodecahedral microcrystals with porous 110 facets as a new electrocatalyst for sensing glutathione. Part Part Syst Charact 32:429–433. https://doi.org/10.1002/ppsc.201400177

    Article  CAS  Google Scholar 

  20. Yang L, Xu C, Ye W, Liu W (2015) An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens Actuators, B 215:489–496. https://doi.org/10.1016/j.snb.2015.03.104

    Article  CAS  Google Scholar 

  21. Wang Q, Yang Y, Gao F, Ni J, Zhang Y, Lin Z (2016) Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples. ACS Appl Mater Interfaces 8:32477–32487. https://doi.org/10.1021/acsami.6b11965

    Article  CAS  PubMed  Google Scholar 

  22. El-Dairi M, House RJ (2019) Optic nerve hypoplasia. In: Handbook of pediatric retinal OCT and the eye-brain connection. Elsevier, Amsterdam, pp 285–287

    Google Scholar 

  23. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355:eaad4998. https://doi.org/10.1126/science.aad4998

    Article  PubMed  Google Scholar 

  24. Li SL, Xu Q (2013) Metal-organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683. https://doi.org/10.1039/c3ee40507a

    Article  CAS  Google Scholar 

  25. Schoedel A, Ji Z, Yaghi OM (2016) The role of metal–organic frameworks in a carbon-neutral energy cycle. Nat Energy 1:1–13. https://doi.org/10.1038/nenergy.2016.34

    Article  CAS  Google Scholar 

  26. Xie Z, Xu W, Cui X, Wang Y (2017) Recent progress in metal-organic frameworks and their derived nanostructures for energy and environmental applications. Chemsuschem 10:1645–1663. https://doi.org/10.1002/cssc.201601855

    Article  CAS  PubMed  Google Scholar 

  27. Srimuk P, Luanwuthi S, Krittayavathananon A, Sawangphruk M (2015) Solid-type supercapacitor of reduced graphene oxide-metal organic framework composite coated on carbon fiber paper. Electrochim Acta 157:69–77. https://doi.org/10.1016/j.electacta.2015.01.082

    Article  CAS  Google Scholar 

  28. Zhang Y, Lin B, Sun Y, Zhang X, Yang H, Wang J (2015) Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv 5:58100–58106. https://doi.org/10.1039/c5ra11597c

    Article  CAS  Google Scholar 

  29. Wang Y, Chen Q (2014) Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect. ACS Appl Mater Interfaces 6:6196–6201. https://doi.org/10.1021/am5011173

    Article  CAS  PubMed  Google Scholar 

  30. Cao X, Tan C, Zhang X, Zhao W, Zhang H (2016) Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv Mater 28:6167–6196. https://doi.org/10.1002/adma.201504833

    Article  CAS  PubMed  Google Scholar 

  31. Zhang M, Dai Q, Zheng H, Chen M, Dai L (2018) Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn–air batteries and water splitting. Adv Mater 30:1–10. https://doi.org/10.1002/adma.201705431

    Article  CAS  Google Scholar 

  32. Ni J, Wang W, Wu C, Liang H, Maier J, Yu Y, Li L (2017) Highly reversible and durable na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv Mater 29:1–6. https://doi.org/10.1002/adma.201605607

    Article  CAS  Google Scholar 

  33. Jiang H, Liu X-C, Wu Y, Shu Y, Gong X, Ke F-S, Deng H (2018) Innentitelbild: metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew Chemie 130:3900–3900. https://doi.org/10.1002/ange.201802341

    Article  Google Scholar 

  34. Xu G, Ding B, Shen L, Nie P, Han J, Zhang X (2013) Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J Mater Chem A 1:4490–4496. https://doi.org/10.1039/c3ta00004d

    Article  CAS  Google Scholar 

  35. Bin WuH, Wei S, Zhang L, Xu R, Hng HH, Lou XW (2013) Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem A Eur J 19:10804–10808. https://doi.org/10.1002/chem.201301689

    Article  CAS  Google Scholar 

  36. Li C, Hu Q, Li Y, Zhou H, Lv Z, Yang X, Liu L, Guo H (2016) Hierarchical hollow Fe2O3 @MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage. Sci Rep 6:1–8. https://doi.org/10.1038/srep25556

    Article  CAS  Google Scholar 

  37. Guo Y, Zhu Y, Yuan C, Wang C (2017) MgFe2O4 hollow microboxes derived from metal-organic-frameworks as anode material for sodium-ion batteries. Mater Lett 199:101–104. https://doi.org/10.1016/j.matlet.2017.04.069

    Article  CAS  Google Scholar 

  38. Fang G, Zhou J, Cai Y, Liu S, Tan X, Pan A, Liang S (2017) Metal-organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. J Mater Chem A 5:13983–13993. https://doi.org/10.1039/c7ta01961k

    Article  CAS  Google Scholar 

  39. Song H, Shen L, Wang J, Wang C (2016) Reversible lithiation–delithiation chemistry in cobalt based metal organic framework nanowire electrode engineering for advanced lithium-ion batteries. J Mater Chem A 4:15411–15419. https://doi.org/10.1039/C6TA05925B

    Article  CAS  Google Scholar 

  40. Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal−organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025. https://doi.org/10.1021/ja0627444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S (2009) Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew Chemie Int Ed 48:4739–4743. https://doi.org/10.1002/anie.200901177

    Article  CAS  Google Scholar 

  42. Puigmartí-Luis J, Rubio-Martínez M, Hartfelder U, Imaz I, Maspoch D, Dittrich PS (2011) Coordination polymer nanofibers generated by microfluidic synthesis. J Am Chem Soc 133:4216–4219. https://doi.org/10.1021/ja110834j

    Article  CAS  PubMed  Google Scholar 

  43. Shi J, Zhang J, Tan D, Cheng X, Tan X, Zhang B, Han B, Liu L, Zhang F, Liu M, Xiang J (2019) Rapid, room-temperature and template-free synthesis of metal-organic framework nanowires in alcohol. ChemCatChem 11:2058–2062. https://doi.org/10.1002/cctc.201900124

    Article  CAS  Google Scholar 

  44. Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M (2016) Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angew Chemie Int Ed 55:4087–4091. https://doi.org/10.1002/anie.201509382

    Article  CAS  Google Scholar 

  45. Zhang Z, Kong L-L, Liu S, Li G-R, Gao X-P (2017) A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv Energy Mater 7:1602543. https://doi.org/10.1002/aenm.201602543

    Article  CAS  Google Scholar 

  46. Li R, Yuan Y-P, Qiu L-G, Zhang W, Zhu J-F (2012) A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives. Small 8:225–230. https://doi.org/10.1002/smll.201101699

    Article  CAS  PubMed  Google Scholar 

  47. Arbulu RC, Jiang Y-B, Peterson EJ, Qin Y (2018) Metal-organic framework (MOF) nanorods, nanotubes, and nanowires. Angew Chemie Int Ed 57:5813–5817. https://doi.org/10.1002/anie.201802694

    Article  CAS  Google Scholar 

  48. Pachfule P, Shinde D, Majumder M, Xu Q (2016) Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat Chem 8:718–724. https://doi.org/10.1038/nchem.2515

    Article  CAS  PubMed  Google Scholar 

  49. Zou L, Hou C-C, Liu Z, Pang H, Xu Q (2018) Superlong single-crystal metal-organic framework nanotubes. J Am Chem Soc 140:15393–15401. https://doi.org/10.1021/jacs.8b09092

    Article  CAS  PubMed  Google Scholar 

  50. Li Q, Zhu W, Lian Y, Peng Y, Deng Z (2020) One-dimensional HKUST-1 nanobelts from Cu nanowires. Chin Chem Lett 31:517–520. https://doi.org/10.1016/j.cclet.2019.05.005

    Article  CAS  Google Scholar 

  51. Mojtabazade F, Mirtamizdoust B, Morsali A, Talemi P (2018) Ultrasonic-assisted synthesis and the structural characterization of novel the zig-zag Cd(II) metal-organic polymer and their nanostructures. Ultrason Sonochem 42:134–140. https://doi.org/10.1016/j.ultsonch.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  52. Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  53. Liu C, Bai Y, Zhao Y, Yao H, Pang H (2020) MoS2/graphene composites: fabrication and electrochemical energy storage. Energy Storage Mater 33:470–502. https://doi.org/10.1016/j.ensm.2020.06.020

    Article  Google Scholar 

  54. Liu J, Yu H, Wang L, Deng Z, Naveed K-R, Nazir A, Haq F (2018) Two-dimensional metal-organic frameworks nanosheets: synthesis strategies and applications. Inorg Chim Acta 483:550–564. https://doi.org/10.1016/j.ica.2018.09.011

    Article  CAS  Google Scholar 

  55. Huang J, Li Y, Huang R-K, He C-T, Gong L, Hu Q, Wang L, Xu Y-T, Tian X-Y, Liu S-Y, Ye Z-M, Wang F, Zhou D-D, Zhang W-X, Zhang J-P (2018) Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew Chemie 130:4722–4726. https://doi.org/10.1002/ange.201801029

    Article  Google Scholar 

  56. Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X (2019) Structural engineering of low-dimensional metal-organic frameworks: synthesis, properties, and applications. Adv Sci 6:1802373. https://doi.org/10.1002/advs.201802373

    Article  Google Scholar 

  57. Xiao X, Zou L, Pang H, Xu Q (2020) Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem Soc Rev 49:301–331. https://doi.org/10.1039/c7cs00614d

    Article  CAS  PubMed  Google Scholar 

  58. Nielsen RB, Kongshaug KO, Fjellvåg H (2008) Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4). J Mater Chem 18:1002. https://doi.org/10.1039/b712479a

    Article  CAS  Google Scholar 

  59. Amo-Ochoa P, Welte L, González-Prieto R, Sanz Miguel PJ, Gómez-García CJ, Mateo-Martí E, Delgado S, Gómez-Herrero J, Zamora F (2010) Single layers of a multifunctional laminar Cu(i, ii) coordination polymer. Chem Commun 46:3262. https://doi.org/10.1039/b919647a

    Article  CAS  Google Scholar 

  60. Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, Zhao Y, Zhang H (2015) Ultrathin 2D metal-organic framework nanosheets. Adv Mater 27:7372–7378. https://doi.org/10.1002/adma.201503648

    Article  CAS  PubMed  Google Scholar 

  61. Junggeburth SC, Diehl L, Werner S, Duppel V, Sigle W, Lotsch BV (2013) Ultrathin 2D coordination polymer nanosheets by surfactant-mediated synthesis. J Am Chem Soc 135:6157–6164. https://doi.org/10.1021/ja312567v

    Article  CAS  PubMed  Google Scholar 

  62. Zhao K, Liu S, Ye G, Gan Q, Zhou Z, He Z (2018) High-yield bottom-up synthesis of 2D metal–organic frameworks and their derived ultrathin carbon nanosheets for energy storage. J Mater Chem A 6:2166–2175. https://doi.org/10.1039/C7TA06916B

    Article  CAS  Google Scholar 

  63. Zhao M, Lu Q, Ma Q, Zhang H (2017) Two-dimensional metal-organic framework nanosheets. Small Methods 1:1600030. https://doi.org/10.1002/smtd.201600030

    Article  CAS  Google Scholar 

  64. Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J-H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H (2013) π-conjugated nickel bis(dithiolene) complex nanosheet. J Am Chem Soc 135:2462–2465. https://doi.org/10.1021/ja312380b

    Article  CAS  PubMed  Google Scholar 

  65. Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC (2015) Two-dimensional metal-organic surfaces for efficient hydrogen evolution from water. J Am Chem Soc 137:118–121. https://doi.org/10.1021/ja5116937

    Article  CAS  PubMed  Google Scholar 

  66. Sakamoto R, Hoshiko K, Liu Q, Yagi T, Nagayama T, Kusaka S, Tsuchiya M, Kitagawa Y, Wong W-Y, Nishihara H (2015) A photofunctional bottom-up bis(dipyrrinato)zinc(II) complex nanosheet. Nat Commun 6:6713. https://doi.org/10.1038/ncomms7713

    Article  CAS  PubMed  Google Scholar 

  67. Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Kapteijn F, LlabrésiXamena FX, Gascon J (2015) Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14(48):55. https://doi.org/10.1038/nmat4113

    Article  CAS  Google Scholar 

  68. Diercks CS, Kalmutzki MJ, Diercks NJ, Yaghi OM (2018) Conceptual advances from werner complexes to metal-organic frameworks. ACS Cent Sci 4:1457–1464. https://doi.org/10.1021/acscentsci.8b00677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ferey G (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042. https://doi.org/10.1126/science.1116275

    Article  CAS  PubMed  Google Scholar 

  70. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130:13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  71. Serre C, Mellot-Draznieks C, Surble S, Audebrand N, Filinchuk Y, Ferey G (2007) Role of solvent-host interactions that lead to very large swelling of hybrid frameworks. Science 315:1828–1831. https://doi.org/10.1126/science.1137975

    Article  CAS  PubMed  Google Scholar 

  72. Luo Y, Ahmad M, Schug A, Tsotsalas M (2019) Rising up: hierarchical metal-organic frameworks in experiments and simulations. Adv Mater 31:1901744. https://doi.org/10.1002/adma.201901744

    Article  CAS  Google Scholar 

  73. Feng L, Wang K-Y, Lv X-L, Powell JA, Yan T-H, Willman J, Zhou H-C (2019) Imprinted apportionment of functional groups in multivariate metal-organic frameworks. J Am Chem Soc 141:14524–14529. https://doi.org/10.1021/jacs.9b06917

    Article  CAS  PubMed  Google Scholar 

  74. Xiao X, Zou L, Pang H, Xu Q (2020) Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chem Soc Rev 49:301–331. https://doi.org/10.1039/C7CS00614D

    Article  CAS  PubMed  Google Scholar 

  75. Feng L, Yuan S, Li J-L, Wang K-Y, Day GS, Zhang P, Wang Y, Zhou H-C (2018) Uncovering two principles of multivariate hierarchical metal-organic framework synthesis via retrosynthetic design. ACS Cent Sci 4:1719–1726. https://doi.org/10.1021/acscentsci.8b00722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feng L, Wang K-Y, Day GS, Zhou H-C (2019) The chemistry of multi-component and hierarchical framework compounds. Chem Soc Rev 48:4823–4853. https://doi.org/10.1039/C9CS00250B

    Article  CAS  PubMed  Google Scholar 

  77. Liang Z, Zhao R, Qiu T, Zou R, Xu Q (2019) Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem 1:100001. https://doi.org/10.1016/j.enchem.2019.100001

    Article  Google Scholar 

  78. Feng L, Wang K-Y, Willman J, Zhou H-C (2020) Hierarchy in metal-organic frameworks. ACS Cent Sci 6:359–367. https://doi.org/10.1021/acscentsci.0c00158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reboul J, Furukawa S, Horike N, Tsotsalas M, Hirai K, Uehara H, Kondo M, Louvain N, Sakata O, Kitagawa S (2012) Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nat Mater 11:717–723. https://doi.org/10.1038/nmat3359

    Article  CAS  PubMed  Google Scholar 

  80. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chemie Int Ed 44:5576–5591. https://doi.org/10.1002/anie.200500496

    Article  CAS  Google Scholar 

  81. Peng Y, Zhao M, Chen B, Zhang Z, Huang Y, Dai F, Lai Z, Cui X, Tan C, Zhang H (2018) Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core-shell hybrid materials. Adv Mater 30:1705454. https://doi.org/10.1002/adma.201705454

    Article  CAS  Google Scholar 

  82. Zhu R, Ding J, Jin L, Pang H (2019) Interpenetrated structures appeared in supramolecular cages, MOFs, COFs. Coord Chem Rev 389:119–140. https://doi.org/10.1016/j.ccr.2019.03.002

    Article  CAS  Google Scholar 

  83. Luo L, Lo W-S, Si X, Li H, Wu Y, An Y, Zhu Q, Chou L-Y, Li T, Tsung C-K (2019) Directional engraving within single crystalline metal-organic framework particles via oxidative linker cleaving. J Am Chem Soc 141:20365–20370. https://doi.org/10.1021/jacs.9b10499

    Article  CAS  PubMed  Google Scholar 

  84. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530. https://doi.org/10.1039/b809030k

    Article  CAS  PubMed  Google Scholar 

  85. Schwieger W, Machoke AG, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A (2016) Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem Soc Rev 45:3353–3376. https://doi.org/10.1039/C5CS00599J

    Article  CAS  PubMed  Google Scholar 

  86. Xu Y, Li Q, Xue H, Pang H (2018) Metal-organic frameworks for direct electrochemical applications. Coord Chem Rev 376:292–318. https://doi.org/10.1016/j.ccr.2018.08.010

    Article  CAS  Google Scholar 

  87. Feng L, Wang K-Y, Lv X-L, Yan T-H, Zhou H-C (2019) Hierarchically porous metal–organic frameworks: synthetic strategies and applications. Natl Sci Rev. https://doi.org/10.1093/nsr/nwz170

    Article  Google Scholar 

  88. Feng L, Yuan S, Zhang L-L, Tan K, Li J-L, Kirchon A, Liu L-M, Zhang P, Han Y, Chabal YJ, Zhou H-C (2018) Creating hierarchical pores by controlled linker thermolysis in multivariate metal-organic frameworks. J Am Chem Soc 140:2363–2372. https://doi.org/10.1021/jacs.7b12916

    Article  CAS  PubMed  Google Scholar 

  89. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B (2018) Ordered macro-microporous metal-organic framework single crystals. Science 359:206–210. https://doi.org/10.1126/science.aao3403

    Article  CAS  PubMed  Google Scholar 

  90. Eddaoudi M, Li H, Yaghi OM (2000) Highly porous and stable metal−organic frameworks: structure design and sorption properties. J Am Chem Soc 122:1391–1397. https://doi.org/10.1021/ja9933386

    Article  CAS  Google Scholar 

  91. Lyu Z, Lim GJH, Guo R, Kou Z, Wang T, Guan C, Ding J, Chen W, Wang J (2019) 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv Funct Mater 29:1806658. https://doi.org/10.1002/adfm.201806658

    Article  CAS  Google Scholar 

  92. Kim Y, Yang T, Yun G, Ghasemian MB, Koo J, Lee E, Cho SJ, Kim K (2015) Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs. Angew Chemie Int Ed 54:13273–13278. https://doi.org/10.1002/anie.201506391

    Article  CAS  Google Scholar 

  93. Carné-Sánchez A, Imaz I, Cano-Sarabia M, Maspoch D (2013) A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat Chem 5:203–211. https://doi.org/10.1038/nchem.1569

    Article  CAS  PubMed  Google Scholar 

  94. Lee J, Kwak JH, Choe W (2017) Evolution of form in metal–organic frameworks. Nat Commun 8:14070. https://doi.org/10.1038/ncomms14070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yanai N, Granick S (2012) Directional self-assembly of a colloidal metal-organic framework. Angew Chemie 124:5736–5739. https://doi.org/10.1002/ange.201109132

    Article  Google Scholar 

  96. Feng L, Li J-L, Day GS, Lv X-L, Zhou H-C (2019) Temperature-controlled evolution of nanoporous MOF crystallites into hierarchically porous superstructures. Chem 5:1265–1274. https://doi.org/10.1016/j.chempr.2019.03.003

    Article  CAS  Google Scholar 

  97. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023. https://doi.org/10.1126/science.1220131

    Article  CAS  PubMed  Google Scholar 

  98. Feng L, Wang K-Y, Yan T-H, Zhou H-C (2020) Seed-mediated evolution of hierarchical metal–organic framework quaternary superstructures. Chem Sci 11:1643–1648. https://doi.org/10.1039/C9SC06064B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li X, Yang X, Xue H, Pang H, Xu Q (2020) Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2:100027. https://doi.org/10.1016/j.enchem.2020.100027

    Article  Google Scholar 

  100. Wang K-B, Xun Q, Zhang Q (2019) Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2:100025. https://doi.org/10.1016/j.enchem.2019.100025

    Article  Google Scholar 

  101. Ma X, Wang L, Zhang Q, Jiang HL (2019) Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew Chemie - Int Ed 58:12175–12179. https://doi.org/10.1002/anie.201907074

    Article  CAS  Google Scholar 

  102. Schröder F, Esken D, Cokoja M, van den Berg M (2008) Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. J Am Chem Soc 130:6119–6130

    Article  Google Scholar 

  103. Xiao J, Shang Q, Xiong Y, Zhang Q, Luo Y, Yu S, Jiang H (2016) Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: the platinum location matters. Angew Chemie 128:9535–9539. https://doi.org/10.1002/ange.201603990

    Article  Google Scholar 

  104. Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, Duchene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316. https://doi.org/10.1038/nchem.1272

    Article  CAS  PubMed  Google Scholar 

  105. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XWD (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180. https://doi.org/10.1002/adma.201202146

    Article  CAS  PubMed  Google Scholar 

  106. Chen L-F, Yu Z-Y, Wang J-J, Li Q-X, Tan Z-Q, Zhu Y-W, Yu S-H (2015) Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 11:119–128. https://doi.org/10.1016/j.nanoen.2014.10.005

    Article  CAS  Google Scholar 

  107. Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv Mater 29:1604167. https://doi.org/10.1002/adma.201604167

    Article  CAS  Google Scholar 

  108. Zheng S, Li Q, Xue H, Pang H, Xu Q (2020) A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 7:305–314. https://doi.org/10.1093/nsr/nwz137

    Article  CAS  Google Scholar 

  109. Zhang M, Shang Q, Wan Y, Cheng Q, Liao G, Pan Z (2019) Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Appl Catal B Environ 241:149–158. https://doi.org/10.1016/j.apcatb.2018.09.036

    Article  CAS  Google Scholar 

  110. Dekrafft KE, Wang C, Lin W (2012) Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv Mater 24:2014–2018. https://doi.org/10.1002/adma.201200330

    Article  CAS  PubMed  Google Scholar 

  111. Fukuzumi S (2014) Hong D (2013) Homogeneous versus heterogeneous catalysts in water oxidation. Eur J Inorg Chem 4:645–659. https://doi.org/10.1002/ejic.201300684

    Article  CAS  Google Scholar 

  112. Wei T, Zhang M, Wu P, Tang YJ, Li SL, Shen FC, Wang XL, Zhou XP, Lan YQ (2017) POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy 34:205–214. https://doi.org/10.1016/j.nanoen.2017.02.028

    Article  CAS  Google Scholar 

  113. Mukhopadhyay S, Debgupta J, Singh C, Kar A, Das SK (2018) A Keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst. Angew Chemie Int Ed 57:1918–1923. https://doi.org/10.1002/anie.201711920

    Article  CAS  Google Scholar 

  114. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) ZIFs—first synthesis. Proc Natl Acad Sci 103:10186–10191. https://doi.org/10.1073/pnas.0602439103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li R, Ren X, Zhao J, Feng X, Jiang X, Fan X, Lin Z, Li X, Hu C, Wang B (2014) Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. J Mater Chem A 2:2168–2173. https://doi.org/10.1039/c3ta14267a

    Article  CAS  Google Scholar 

  116. Zhang L, Mi T, Ziaee MA, Liang L, Wang R (2018) Hollow POM@MOF hybrid-derived porous Co3O4/CoMoO4 nanocages for enhanced electrocatalytic water oxidation. J Mater Chem A 6:1639–1647. https://doi.org/10.1039/c7ta08683k

    Article  CAS  Google Scholar 

  117. Chen C, Wu A, Yan H, Xiao Y, Tian C, Fu H (2018) Trapping [PMo12O40]3- clusters into pre-synthesized ZIF-67 toward MoXCoXC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem Sci 9:4746–4755. https://doi.org/10.1039/c8sc01454j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, Wang Y, Zhang L, Sen LC, Pang H (2019) Core-shell-type ZIF-8@ZIF-67@POM hybrids as efficient electrocatalysts for the oxygen evolution reaction. Inorg Chem Front 6:2514–2520. https://doi.org/10.1039/c9qi00798a

    Article  CAS  Google Scholar 

  119. Smart SK, Cassady AI, Lu GQ, Martin DJ (2006) The biocompatibility of carbon nanotubes. Carbon N Y 44:1034–1047. https://doi.org/10.1016/j.carbon.2005.10.011

    Article  CAS  Google Scholar 

  120. Yang SJ, Choi JY, Chae HK, Cho JH, Nahm KS, Park CR (2009) Preparation and enhanced hydrostability and hydrogen storage capacity of CNT©MOF-5 hybrid composite. Chem Mater 21:1893–1897. https://doi.org/10.1021/cm803502y

    Article  CAS  Google Scholar 

  121. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  CAS  PubMed  Google Scholar 

  122. Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512. https://doi.org/10.1039/c3cs60472a

    Article  CAS  PubMed  Google Scholar 

  123. Jabbari V, Veleta JM, Zarei-Chaleshtori M, Gardea-Torresdey J, Villagrán D (2016) Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chem Eng J 304:774–783. https://doi.org/10.1016/j.cej.2016.06.034

    Article  CAS  Google Scholar 

  124. Castarlenas S, Téllez C, Coronas J (2017) Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J Memb Sci 526:205–211. https://doi.org/10.1016/j.memsci.2016.12.041

    Article  CAS  Google Scholar 

  125. Jayaramulu K, Masa J, Tomanec O, Peeters D, Ranc V, Schneemann A, Zboril R, Schuhmann W, Fischer RA (2017) Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution. Adv Funct Mater 27:1–10. https://doi.org/10.1002/adfm.201700451

    Article  CAS  Google Scholar 

  126. Petit C, Bandosz TJ (2009) MOF-graphite oxide composites: Combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757. https://doi.org/10.1002/adma.200901581

    Article  CAS  Google Scholar 

  127. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I (2017) Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem Eng J 326:1145–1158. https://doi.org/10.1016/j.cej.2017.06.054

    Article  CAS  Google Scholar 

  128. Travlou NA, Singh K, Rodríguez-Castellón E, Bandosz TJ (2015) Cu-BTC MOF-graphene-based hybrid materials as low concentration ammonia sensors. J Mater Chem A 3:11417–11429. https://doi.org/10.1039/c5ta01738f

    Article  CAS  Google Scholar 

  129. Lee S, Oh S, Oh M (2020) Atypical hybrid metal-organic frameworks (MOFs): a combinative process for MOF-on-MOF growth, etching, and structure transformation. Angew Chem Int Ed 59:1327–1333. https://doi.org/10.1002/anie.201912986

    Article  CAS  Google Scholar 

  130. Choi S, Kim T, Ji H, Lee HJ, Oh M (2016) Isotropic and anisotropic growth of metal-organic framework (MOF) on MOF: logical inference on MOF structure based on growth behavior and morphological feature. J Am Chem Soc 138:14434–14440. https://doi.org/10.1021/jacs.6b08821

    Article  CAS  PubMed  Google Scholar 

  131. Wang Z, Liu J, Lukose B, Gu Z, Weidler PG, Gliemann H, Heine T, Wöll C (2014) Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks. Nano Lett 14:1526–1529. https://doi.org/10.1021/nl404767k

    Article  CAS  PubMed  Google Scholar 

  132. Ikigaki K, Okada K, Tokudome Y, Toyao T, Falcaro P, Doonan CJ, Takahashi M (2019) MOF-on-MOF: oriented growth of multiple layered thin films of metal-organic frameworks. Angew Chem Int Ed 58:6886–6890. https://doi.org/10.1002/anie.201901707

    Article  CAS  Google Scholar 

  133. Yao MS, Xiu JW, Huang QQ, Li WH, Wu WW, Wu AQ, Cao LA, Deng WH, Wang GE, Xu G (2019) Van der Waals heterostructured MOF-on-MOF thin films: cascading functionality to realize advanced chemiresistive sensing. Angew Chem Int Ed 58:14915–14919. https://doi.org/10.1002/anie.201907772

    Article  CAS  Google Scholar 

  134. Gu Y, Wu YN, Li L, Chen W, Li F, Kitagawa S (2017) Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew Chem Int Ed 56:15658–15662. https://doi.org/10.1002/anie.201709738

    Article  CAS  Google Scholar 

  135. He J, Yap RCC, Yee Wong S, Zhang Y, Hu Y, Chen C, Zhang X, Wang J, Li X (2016) Controlled growth of a metal-organic framework on gold nanoparticles. CrystEngComm 18:5262–5266. https://doi.org/10.1039/c6ce00733c

    Article  CAS  Google Scholar 

  136. Sindoro M, Granick S (2014) Voids and yolk-shells from crystals that coat particles. J Am Chem Soc 136:13471–13473. https://doi.org/10.1021/ja507274n

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pang, H., Tang, Y. (2021). Nano/Micro MOF-Based Materials. In: Pang, H. (eds) Nano/Micro Metal-Organic Frameworks . Springer, Singapore. https://doi.org/10.1007/978-981-16-4071-1_1

Download citation

Publish with us

Policies and ethics