Skip to main content

High-Throughput Sequencing Technologies

  • Chapter
  • First Online:
Bioinformatics in Rice Research

Abstract

Optical and biochemical methods determine the sequence of nucleotide bases in a DNA macromolecule. Since 2010, considerable progress has been made on DNA sequencing technology. There are various high-throughput sequencing (HTS) technologies, such as Roche 454, Illumina dye sequencing, PacBio’s SMRT, Ion Torrent, Oxford Nanopore, SOLiD, and DNA nano-array sequencer, that have emerged with less cost and are time-saving. Sanger sequencing is the first-generation sequencing method. Subsequently, many next-generation sequencing (NGS) platforms are being used for genome sequencing. These DNA sequencing technologies have altered our view on understanding genomes and their analysis. This chapter presents a simple overview of the HTS technologies, their applications, and limitations. We aim to provide readers in the field with an easy and comprehensible description of HTS technologies to provide them with essential knowledge in full zeal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARE:

Parallel analysis of RNA ends

BAM:

Binary alignment map

CAGE:

Cap analysis of gene expression

ChIA-PET:

Chromatin interaction analysis by paired-end tag sequencing

DOE:

Department of Energy

HTS:

High-throughput sequencing

ISPs:

Ion Sphere Particles

NGS:

Next-Generation Sequencing

NHGRI:

National Human Genome Research Institute

NIH:

National Institute of Health

PCR:

Polymerase chain reaction

RIP-chip:

RNA immunoprecipitation chip

RNA-Map:

RNA on a massively parallel array

SBS:

Sequencing by synthesis

SMRT:

Single molecule real-time

SNVs:

Single nucleotide variants

SOLiD:

Sequencing by sequential ligation of oligonucleotide probes

Svs:

Structural variations

TADs:

Topological Associated Domains

XIAP:

X-lined inhibitor of apoptosis

References

  1. Padilla-Sanchez V, Gao S, Kim HR, Kihara D, Sun L, Rossmann MG, et al. Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine. J Mol Biol. 2014;426(5):1019–38.

    Article  CAS  PubMed  Google Scholar 

  2. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7. https://doi.org/10.1073/pnas.74.12.5463. PMID: 271968; PMCID: PMC431765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pereira R, Oliveira J, Sousa M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med. 2020;9(1):132.

    Article  CAS  PubMed Central  Google Scholar 

  4. Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018;122(1):e59.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Harrington CT, Lin EI, Olson MT, Eshleman JR. Fundamentals of pyrosequencing. Arch Pathol Lab Med. 2013;137(9):1296–303.

    Article  CAS  PubMed  Google Scholar 

  6. Ye H, Meehan J, Tong W, Hong H. Alignment of short reads: a crucial step for application of next-generation sequencing data in precision medicine. Pharmaceutics. 2015;7(4):523–41.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chung CAB, Boyd VL, McKernan KJ, Fu Y, Monighetti C, Peckham HE, et al. Whole methylome analysis by ultra-deep sequencing using two-base encoding. PLoS One. 2010;5(2):e9320.

    Article  CAS  Google Scholar 

  9. Pu D, Chen J, Bai Y, Tu J, Xie H, Wang W, et al. Sequencing-by-ligation using oligonucleotide probes with 3′-thio-deoxyinosine. J Biomed Nanotechnol. 2014;10(5):751–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gupta N, Verma VK. Next-generation sequencing and its application: empowering in public health beyond reality. In: Arora PK, editor. Microbial technology for the welfare of society, Microorganisms for sustainability. Singapore: Springer; 2019. p. 313–41. https://doi.org/10.1007/978-981-13-8844-6_15.

    Chapter  Google Scholar 

  11. Mirzabekov AD. DNA sequencing by hybridization—a megasequencing method and a diagnostic tool? Trends Biotechnol. 1994;12(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  12. Drmanac R, Drmanac S, Chui G, Diaz R, Hou A, Jin H, et al. Sequencing by hybridization (SBH): advantages, achievements, and opportunities. Adv Biochem Eng Biotechnol. 2002;77:75–101.

    CAS  PubMed  Google Scholar 

  13. Qin Y, Schneider TM, Brenner MP. Sequencing by hybridization of long targets. PLoS One. 2012;7(5):e35819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One. 2012;7(2):e30087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Verma V, Gupta A, Chaudhary VK. Emulsion PCR made easy. BioTechniques. 2020;69(1):421–6.

    Article  CAS  PubMed  Google Scholar 

  16. Nyrén P. The history of pyrosequencing(®). Methods Mol Biol. 2015;1315:3–15.

    Article  PubMed  Google Scholar 

  17. Buermans HPJ, den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta. 2014;1842(10):1932–41.

    Article  CAS  PubMed  Google Scholar 

  18. Heather JM, Chain B. The sequence of sequencers: the history of sequencing DNA. Genomics. 2016;107(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J. High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol. 2016;56(4):394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. García-Chequer AJ, Méndez-Tenorio A, Olguín-López G, Sánchez-Vallejo C, Isa P, Arias CF, et al. Illumina next generation sequencing data and expression microarrays data from retinoblastoma and medulloblastoma tissues. Data Brief. 2016;6:908–16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Salipante SJ, Kawashima T, Rosenthal C, Hoogestraat DR, Cummings LA, Sengupta DJ, et al. Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol. 2014;80(24):7583–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Xu Y, Lin Z, Tang C, Tang Y, Cai Y, Zhong H, et al. A new massively parallel nanoball sequencing platform for whole exome research. BMC Bioinform. 2019;20(1):153.

    Article  Google Scholar 

  23. Porreca GJ. Genome sequencing on nanoballs. Nat Biotechnol. 2010;28(1):43–4.

    Article  CAS  PubMed  Google Scholar 

  24. Nakano K, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, et al. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Hum Cell. 2017;30(3):149–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petersen LM, Martin IW, Moschetti WE, Kershaw CM, Tsongalis GJ. Third-generation sequencing in the clinical laboratory: exploring the advantages and challenges of nanopore sequencing. J Clin Microbiol. 2019;58(1):e01315–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jadhav V, Hoogerheide DP, Korlach J, Wanunu M. Porous zero-mode waveguides for picogram-level DNA capture. Nano Lett. 2019;19(2):921–9.

    Article  PubMed  CAS  Google Scholar 

  27. Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif). 2013;6:287–303.

    Article  CAS  Google Scholar 

  28. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    Article  CAS  Google Scholar 

  29. Siva N. 1000 genomes project. Nat Biotechnol. 2008;26(3):256.

    Article  PubMed  Google Scholar 

  30. GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.

    Article  CAS  Google Scholar 

  31. Chen J, Li X, Zhong H, Meng Y, Du H. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers. Sci Rep. 2019;9(1):9345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics. 2012;28(14):1811–7.

    Article  CAS  PubMed  Google Scholar 

  33. Becker KG, Barnes KC, Bright TJ, Wang SA. The genetic association database. Nat Genet. 2004;36(5):431–2.

    Article  CAS  PubMed  Google Scholar 

  34. Wlasnowolski M, Sadowski M, Czarnota T, Jodkowska K, Szalaj P, Tang Z, et al. 3D-GNOME 2.0: a three-dimensional genome modeling engine for predicting structural variation-driven alterations of chromatin spatial structure in the human genome. Nucleic Acids Res. 2020;48(W1):W170–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keen G, Burton J, Crowley D, Dickinson E, Espinosa-Lujan A, Franks E, et al. The Genome Sequence DataBase (GSDB): meeting the challenge of genomic sequencing. Nucleic Acids Res. 1996;24(1):13–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chou H-C, Acevedo-Luna N, Kuhlman JA, Schneider SQ. PdumBase: a transcriptome database and research tool for Platynereis dumerilii and early development of other metazoans. BMC Genomics. 2018;19(1):618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Buza TM, Tonui T, Stomeo F, Tiambo C, Katani R, Schilling M, et al. IMAP: an integrated bioinformatics and visualization pipeline for microbiome data analysis. BMC Bioinform. 2019;20(1):374.

    Article  Google Scholar 

  38. Krawczak M, Ball EV, Fenton I, Stenson PD, Abeysinghe S, Thomas N, et al. Human gene mutation database-a biomedical information and research resource. Hum Mutat. 2000;15(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  39. Varshney GK, Carrington B, Pei W, Bishop K, Chen Z, Fan C, et al. A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nat Protoc. 2016;11(12):2357–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong Q, Schlueter SD, Brendel V. PlantGDB, plant genome database and analysis tools. Nucleic Acids Res. 2004;32(Database issue):D354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bolser DM, Staines DM, Perry E, Kersey PJ. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. In: van Dijk ADJ, editor. Plant genomics databases: methods and protocols, Methods in molecular biology. New York: Springer; 2017. p. 1–31. https://doi.org/10.1007/978-1-4939-6658-5_1.

    Chapter  Google Scholar 

  42. Yu Y, Wang Y, Xia Z, Zhang X, Jin K, Yang J, et al. PreMedKB: an integrated precision medicine knowledgebase for interpreting relationships between diseases, genes, variants and drugs. Nucleic Acids Res. 2019;47(D1):D1090–101.

    Article  CAS  PubMed  Google Scholar 

  43. Fang Y, Quan J, Hua X, Feng Y, Li X, Wang J, et al. Complete genome sequence of Acinetobacter baumannii XH386 (ST208), a multi-drug resistant bacteria isolated from pediatric hospital in China. Genom Data. 2016;7:269–74.

    Article  PubMed  Google Scholar 

  44. Mundade R, Ozer HG, Wei H, Prabhu L, Lu T. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle. 2014;13(18):2847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al. High-resolution mapping and characterization of open chromatin across the genome. Cell. 2008;132(2):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li G, Cai L, Chang H, Hong P, Zhou Q, Kulakova EV, et al. Chromatin Interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics. 2014;15(Suppl 12):S11.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mirny LA. The fractal globule as a model of chromatin architecture in the cell. Chromosom Res. 2011;19(1):37–51.

    Article  CAS  Google Scholar 

  48. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):e1005457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yu L, Shao C, Ye X, Meng Y, Zhou Y, Chen M. miRNA Digger: a comprehensive pipeline for genome-wide novel miRNA mining. Sci Rep. 2016;6:18901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients [Internet]. 2019 [cited 2021 Jan 5]; 11(7). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6682904/.

  51. Arnold JW, Roach J, Azcarate-Peril MA. Emerging technologies for gut microbiome research. Trends Microbiol. 2016;24(11):887–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledge base of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Suppl_1):D514–7.

    CAS  PubMed  Google Scholar 

  53. Cifaldi C, Chiriaco M, Matteo GD, Cesare SD, Alessia S, Angelis PD, et al. Novel X-linked inhibitor of apoptosis mutation in very early-onset inflammatory bowel disease child successfully treated with HLA-haploidentical hemapoietic stem cells transplant after removal of αβT and B cells. Front Immunol [Internet]. 2017 [cited 2021 Jan 5]; 8. Available from: https://moh-it.pure.elsevier.com/en/publications/novel-x-linked-inhibitor-of-apoptosis-mutation-in-very-early-onse-3.

  54. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.

    Article  CAS  Google Scholar 

  55. Lim Z-F, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12(1):134.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Green ED, Watson JD, Collins FS. Human genome project: twenty-five years of big biology. Nature. 2015;526(7571):29–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300(5617):286–90.

    Article  CAS  PubMed  Google Scholar 

  58. Jones KM, Ankeny RA, Cook-Deegan R. The Bermuda triangle: the pragmatics, policies, and principles for data sharing in the history of the human genome project. J Hist Biol. 2018;51(4):693–805.

    Article  PubMed Central  Google Scholar 

  59. McEwen JE, Boyer JT, Sun KY, Rothenberg KH, Lockhart NC, Guyer MS. The Ethical, Legal, and Social Implications Program of the National Human Genome Research Institute: reflections on an ongoing experiment. Annu Rev Genomics Hum Genet. 2014;15:481–505.

    Article  CAS  PubMed  Google Scholar 

  60. Sekse C, Holst-Jensen A, Dobrindt U, Johannessen GS, Li W, Spilsberg B, et al. High throughput sequencing for detection of foodborne pathogens. Front Microbiol [Internet]. 2017 [cited 2021 Jan 5]; 8. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2017.02029/full.

  61. Dong L, Wang W, Li A, Kansal R, Chen Y, Chen H, et al. Clinical next generation sequencing for precision medicine in cancer. Curr Genomics. 2015;16(4):253–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher than you think! Genome Biol. 2011;12(8):125.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mardis ER. The $1,000 genome, the $100,000 analysis? Genome Med. 2010;2(11):84.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moorthie S, Hall A, Wright CF. Informatics and clinical genome sequencing: opening the black box. Genet Med. 2013;15(3):165–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kant Gupta .

Editor information

Editors and Affiliations

Ethics declarations

None

Other Information

Fig. 13.1 (CC BY 4.0) [3] and Table 13.1 (CC BY 4.0) [6] have been used under the terms of the Creative Commons Attribution License.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elumalai, E., Gupta, K.K. (2021). High-Throughput Sequencing Technologies. In: Gupta, M.K., Behera, L. (eds) Bioinformatics in Rice Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-3993-7_13

Download citation

Publish with us

Policies and ethics