Skip to main content

Enzymatic Saccharification Technologies for Biofuel Production: Challenges and Prospects

  • Chapter
  • First Online:
Microbial Biotechnology for Renewable and Sustainable Energy

Abstract

Significant advancement has been made in biomass valorization, especially in the twenty-first century. Reasons for these advancements include population growth, depletion in petroleum and fossil fuels, and growing demand for fuels, lignin derivatives, and petrochemicals. The energy demand is increasing tremendously, and today’s energy needs can be met by producing fuels and chemicals from renewable feedstocks. Agricultural by-products and other lignocellulosic biomass (LCB) are abundant feedstocks for this purpose. A plethora of biocatalysts are available for biomass conversion, and the discovery of new and efficient enzymes is ever increasing. The significant challenges faced in this area are bridging the efficient utilization of biomass and developing enzyme cocktails with improved saccharification efficiency in a cost-effective manner. Overcoming the inhibitors generation during pretreatment, understanding biomass complexity, enhancing biocatalyst efficiency, optimizing saccharification, and reducing operating costs are challenging needs. This chapter provides a comprehensive review of biomass feedstocks, the enzymes available for the conversion and saccharification of these renewable substrates, the challenges for optimized conversion, and the production of platform chemicals that can serve as substrates for generating other high-value products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ademark P, De Vries RP, Hägglund P, Stålbrand H, Visser J (2001) Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. Eur J Biochem 268(10):2982–2990

    Article  CAS  PubMed  Google Scholar 

  • Adewuyi A (2020) Challenges and prospects of renewable energy in Nigeria: a case of bioethanol and biodiesel production. J Energy Rep 6:77–88

    Article  Google Scholar 

  • Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. J Eng Life Sci 18(11):768–778

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):1–11

    Article  CAS  Google Scholar 

  • Ariyan M, Uthandi S (2019) Xylitol production by xylose reductase over producing recombinant Escherichia coli M15. Madras Agric J 106(1–3):1

    Google Scholar 

  • Arnling Bååth J, Giummarella N, Klaubauf S, Lawoko M, Olsson L (2016) A Glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds. FEBS Lett 590(16):2611–2618

    Article  PubMed  CAS  Google Scholar 

  • Baker JO, King MR, Adney WS, Decker SR, Vinzant TB, Lantz SE, Nieves RE, Thomas SR, Li LC, Cosgrove D (2000) Investigation of the cell-wall loosening protein expansin as a possible additive in the enzymatic saccharification of lignocellulosic biomass. In: Twenty-first symposium on biotechnology for fuels and chemicals. Springer, pp 217–223

    Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Aslam N, Walton JD (2010) Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a Core set. Biotechnol Bioeng 106(5):707–720

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  PubMed  Google Scholar 

  • Beg Q, Kapoor M, Mahajan L, Hoondal G (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3):326–338

    Article  CAS  PubMed  Google Scholar 

  • Bellido C, Bolado S, Coca M, Lucas S, González-Benito G, García-Cubero MT (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102(23):10868–10874

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  CAS  PubMed  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria V (2002) Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22(4):375–407

    Article  CAS  PubMed  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15(1):1–13

    Article  CAS  Google Scholar 

  • Brown D, Dean R, Diener S, Houfek TD, Mitchell T, Foreman PK, Dankmeyer L, Dunn-Coleman NS, Goedegebuur F, England G (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278(34):31988–31997

    Article  PubMed  Google Scholar 

  • Cateto C, Hu G, Ragauskas A (2011) Enzymatic hydrolysis of Organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ Sci 4(4):1516–1521

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010) Key drivers influencing the commercialization of ethanol-based biorefineries. J Commer Biotechnol 16(3):239–257

    Article  Google Scholar 

  • Chundawat SP, Vismeh R, Sharma LN, Humpula JF, Da Costa Sousa L, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (Afex) and dilute acid based pretreatments. Bioresour Technol 101(21):8429–8438

    Article  CAS  PubMed  Google Scholar 

  • Cintra LC, Da Costa IC, De Oliveira ICM, Fernandes AG, Faria SP, Jesuíno RSA, Ravanal MC, Eyzaguirre J, Ramos LP, De Faria FP (2020) The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzyme Microb Technol 133:109447

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Suzuki MR, Hammel KE (2005) Processive endoglucanase active in crystalline cellulose hydrolysis by the Brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 71(5):2412–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23

    Article  CAS  PubMed  Google Scholar 

  • Damião Xavier F, Santos Bezerra G, Florentino Melo Santos S, Sousa Conrado Oliveira L, Luiz Honorato Silva F, Joice Oliveira Silva A, Maria Conceição M (2018) Evaluation of the simultaneous production of xylitol and ethanol from sisal fiber. Biomol Ther 8(1):2

    Google Scholar 

  • Dar RA, Dar EA, Kaur A, Phutela UG (2018) Sweet sorghum-A promising alternative feedstock for biofuel production. J Renew Sustain Energy Rev 82:4070–4090

    Article  Google Scholar 

  • Davis KM, Rover M, Brown RC, Bai X, Wen Z, Jarboe LR (2016) Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies 9(10):808

    Article  CAS  Google Scholar 

  • Dragone G, Kerssemakers AA, Driessen JL, Yamakawa CK, Brumano LP, Mussatto SI (2020) Innovation and strategic orientations for the development of advanced biorefineries. Bioresour Technol 302:122847

    Article  CAS  PubMed  Google Scholar 

  • Du B, Sharma LN, Becker C, Chen SF, Mowery RA, Van Walsum GP, Chambliss CK (2010) Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107(3):430–440

    Article  CAS  PubMed  Google Scholar 

  • Fockink DH, Urio MB, Chiarello LM, Sánchez JH, Ramos LP (2016) Principles and challenges involved in the enzymatic hydrolysis of cellulosic materials at high total solids. In: Green fuels technology, pp 147–173

    Google Scholar 

  • Ganesan M, Vinayakamoorthy RM, Thankappan S, Muniraj I, Uthandi S (2020) Thermotolerant glycosyl hydrolases-producing Bacillus aerius CMCPS1 and its saccharification efficiency on HCR-laccase (LccH)-pretreated corncob biomass. Biotechnol Biofuels 13(1):1–14

    Article  CAS  Google Scholar 

  • Gaur N, Narasimhulu K, Pydisetty Y (2018) Biochemical and kinetic characterization of laccase and manganese peroxidase from novel Klebsiella pneumoniae strains and their application in bioethanol production. RSC Adv 8(27):15044–15055

    Article  CAS  Google Scholar 

  • Genencos (2010) A trademark product introduced in 2010 by Accellerase Genencos

    Google Scholar 

  • Gourlay K, Arantes V, Saddler JN (2012) Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol Biofuels 5(1):1–14

    Article  CAS  Google Scholar 

  • Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttilä M, Saddler J (2013) Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour Technol 142:498–503

    Article  CAS  PubMed  Google Scholar 

  • Guerriero G, Hausman J-F, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo G-L, Chen W-H, Chen W-H, Men L-C, Hwang W-S (2008) Characterization of dilute acid pretreatment of Silvergrass for ethanol production. Bioresour Technol 99(14):6046–6053

    Article  CAS  PubMed  Google Scholar 

  • Han SJ, Yoo YJ, Kang HS (1995) Characterization of a bifunctional cellulase and its structural gene: the Cel gene of Bacillus sp. D04 has exo-and endoglucanase activity. J Biol Chem 270(43):26012–26019

    Article  CAS  PubMed  Google Scholar 

  • Hepowit NL, Uthandi S, Miranda HV, Toniutti M, Prunetti L, Olivarez O, De Vera IM, Fanucci GE, Chen S, Maupin-Furlow JA (2012) Archaeal jab 1/Mpn/Mov 34 metalloenzyme (Hvjamm 1) cleaves ubiquitin-like small archaeal modifier proteins (Samp S) from protein-conjugates. Mol Microbiol 86(4):971–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huy ND, Le Nguyen C, Seo J-W, Kim D-H, Park S-M (2015) Putative endoglucanase Pcgh5 from Phanerochaete chrysosporium is a beta-xylosidase that cleaves xylans in synergistic action with endo-xylanase. J Biosci Bioeng 119(4):416–420

    Article  CAS  PubMed  Google Scholar 

  • Jacobson F, Karkehabadi S, Hansson H, Goedegebuur F, Wallace L, Mitchinson C, Piens K, Stals I, Sandgren M (2013) The crystal structure of the Core domain of a cellulose induced protein (Cip1) from Hypocrea jecorina, at 1.5 Å resolution. PLoS One 8(9):E70562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Japar AS, Takriff MS, Yasin NH (2017) Harvesting microalgal biomass and lipid extraction for potential biofuel production: a review. J Environ Chem Eng 5(1):555–563

    Article  CAS  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  PubMed  CAS  Google Scholar 

  • Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98(10):2034–2042

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy S, Muniraj IK, Purushothaman N, Sekar A, Sharmila D, Kumarasamy R, Uthandi S (2016) High level secretion of laccase (Lcch) from a newly isolated white-rot basidiomycete, Hexagonia hirta MSF2. Front Microbiol 7:707

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang L, Lee YY, Yoon S-H, Smith AJ, Krishnagopalan GA (2012) Ethanol production from the mixture of hemicellulose prehydrolysate and paper sludge. Bioresources 7(3):3607–3626

    CAS  Google Scholar 

  • Kim D (2018) Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Molecules 23(2):309

    Article  PubMed Central  CAS  Google Scholar 

  • Klinke HB, Thomsen A, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  CAS  PubMed  Google Scholar 

  • Knob A, Terrasan CF, Carmona E (2010) Β-xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26(3):389–407

    Article  CAS  Google Scholar 

  • Krahe M, Antranikian G, Märkl H (1996) Fermentation of Extremophilic microorganisms. FEMS Microbiol Rev 18(2–3):271–285

    Article  CAS  Google Scholar 

  • Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103(1):201–208

    Article  CAS  PubMed  Google Scholar 

  • Kurašin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286(1):169–177

    Article  PubMed  CAS  Google Scholar 

  • Lai C, Tu M, Yong Q, Yu S (2015) Disparate roles of solvent extractable lignin and residual bulk lignin in enzymatic hydrolysis of pretreated sweetgum. RSC Adv 5(119):97966–97974

    Article  CAS  Google Scholar 

  • Lai C, Tu M, Xia C, Shi Z, Sun S, Yong Q, Yu S (2017) Lignin alkylation enhances enzymatic hydrolysis of lignocellulosic biomass. Energy Environ Sci 31(11):12317–12326

    CAS  Google Scholar 

  • Lei Z, Shao Y, Yin X, Yin D, Guo Y, Yuan J (2016) Combination of xylanase and debranching enzymes specific to wheat Arabinoxylan improve the growth performance and gut health of broilers. J Agric Food Chem 64(24):4932–4942

    Article  CAS  PubMed  Google Scholar 

  • Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the Cazy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):1–14

    Article  CAS  Google Scholar 

  • Li X, Zheng Y (2017) Lignin-enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnol Adv 35(4):466–489

    Article  PubMed  CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress Energy Combust Sci 38(4):449–467

    Article  CAS  Google Scholar 

  • Liu Z-H, Qin L, Pang F, Jin M-J, Li B-Z, Kang Y, Dale BE, Yuan Y-J (2013) Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn Stover. Ind Crop Prod 44:176–184

    Article  CAS  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (Cazy) in 2013. Nucleic Acids Res 42(D1):D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malgas S, Pletschke BI (2019) The effect of an oligosaccharide reducing-end xylanase, Bhrex8a, on the synergistic degradation of Xylan backbones by an optimised Xylanolytic enzyme cocktail. Microbial Enzyme Technol 122:74–81

    Article  CAS  Google Scholar 

  • Malgas S, Mafa MS, Mkabayi L, Pletschke BI (2019) A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation. World J Microbiol Biotechnol 35(12):1–13

    Article  CAS  Google Scholar 

  • Mandels M, Reese ET (1965) Inhibition of cellulases and beta-glucosidases. In: Advances in enzymic hydrolysis of cellulose and related materials pergamon, pp 115–157

    Google Scholar 

  • Margareta W, Nagarajan D, Chang J-S, Lee D-J (2020) Dark fermentative hydrogen production using macroalgae (Ulva sp.) as the renewable feedstock. Appl Energy 262:114574

    Article  CAS  Google Scholar 

  • Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase ii from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59(5):621–634

    Article  CAS  PubMed  Google Scholar 

  • Michelin M, Ximenes E, De Moraes MD, Ladisch MR (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278

    Article  CAS  PubMed  Google Scholar 

  • Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11(3):88–95

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan D, Nandini A, Dong C-D, Lee D-J, Chang J-S (2020) Lactic acid production from renewable feedstocks using poly (vinyl alcohol)-immobilized Lactobacillus plantarum 23. Ind Eng Chem Res 59(39):17156–17164

    Article  CAS  Google Scholar 

  • Nigam J (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Nikkhah A, Assad ME, Rosentrater KA, Ghnimi S, Van Haute S (2020) Comparative review of three approaches to biofuel production from energy crops as feedstock in a developing country. Bioresour Technol Rep 10:100412

    Article  Google Scholar 

  • Okoro OV, Sun Z, Birch J (2017) Meat processing waste as a potential feedstock for biochemicals and biofuels—a review of possible conversion technologies. J Clean Prod 142:1583–1608

    Article  Google Scholar 

  • Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184(1):69–72

    Article  CAS  PubMed  Google Scholar 

  • Pazmiño-Hernandez M, Moreira CM, Pullammanappallil P (2019) Feasibility assessment of waste banana peduncle as feedstock for biofuel production. Biofuels 10(4):473–484

    Article  CAS  Google Scholar 

  • Pereira JH, Heins RA, Gall DL, Mcandrew RP, Deng K, Holland KC, Donohue TJ, Noguera DR, Simmons BA, Sale KL (2016) Structural and biochemical characterization of the early and late enzymes in the lignin Β-aryl ether cleavage pathway from Sphingobium sp. SYK-6. J Biol Chem 291(19):10228–10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrowski JS, Zhang Y, Sato T, Ong I, Keating D, Bates D, Landick R (2014) Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Front Microbiol 5:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Pokkuluri PR, Duke N, Wood SJ, Cotta MA, Li XL, Biely P, Schiffer M (2011) Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina. Proteins 79(8):2588–2592

    Article  CAS  PubMed  Google Scholar 

  • Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge JA, Amorim D (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of micro and macro algae for biofuel production: a brief review. Bioresources 9(1):1606–1633

    Google Scholar 

  • Rasmussen H, Sørensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57

    Article  CAS  PubMed  Google Scholar 

  • Raud M, Kikas T, Sippula O, Shurpali N (2019) Potentials and challenges in lignocellulosic biofuel production technology. Renew Sustain Energy Rev 111:44–56

    Article  CAS  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, De Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78(4):614–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Sajith S, Priji P, Sreedevi S, Benjamin S (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 6(1):461

    Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    Article  CAS  PubMed  Google Scholar 

  • Sankar MK, Ravikumar R, Kumar MN, Sivakumar U (2018) Development of co-immobilized tri-enzyme biocatalytic system for one-pot pretreatment of four different perennial lignocellulosic biomass and evaluation of their bioethanol production potential. Bioresour Technol 269:227–236

    Article  CAS  Google Scholar 

  • Sistakameshwar A, Qin W (2018) Comparative study of genome-wide plant biomass-degrading Cazymes in white rot, Brown rot and Soft rot fungi. Mycology 9(2):93–105

    Article  CAS  Google Scholar 

  • Saranya S, Uthandi S (2017) Thermophilic cellulolytic fungi: cellulase production, characterization and biomass conversion. Thesis submitted to Tamil Nadu Agricultural University, pp 1–101

    Google Scholar 

  • Su L-H, Zhao S, Jiang S-X, Liao X-Z, Duan C-J, Feng J-X (2017) Cellulase with high Β-glucosidase activity by Penicillium oxalicum under solid-state fermentation and its use in hydrolysis of cassava residue. World J Microbiol Biotechnol Adv 33(2):37

    Article  CAS  Google Scholar 

  • Tawalbeh M, Rajangam AS, Salameh T, Al-Othman A, Alkasrawi M (2021) Characterization of paper mill sludge as a renewable feedstock for sustainable hydrogen and biofuels production. Int J Hydrog Energy 46(6):4761–4775

    Article  CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15(5):160–167

    Article  Google Scholar 

  • Thangappan S, Kandasamy S, Uthandi S (2017) Deciphering thermostable xylanases from hot springs: the heritage of Himachal Pradesh for efficient biomass deconstruction. Madras Agric J 104:282

    Article  Google Scholar 

  • Thangavelu K, Desikan R, Taran OP, Uthandi S (2018) Delignification of corncob via combined hydrodynamic cavitation and enzymatic pretreatment: process optimization by response surface methodology. Biotechnol Biofuels 11(1):203. https://doi.org/10.1186/S13068-018-1204-Y

    Article  PubMed  PubMed Central  Google Scholar 

  • Thankappan S, Kandasamy S, Joshi B, Sorokina KN, Taran OP, Uthandi S (2018) Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization. AMB Express 8(1):1–15

    Article  CAS  Google Scholar 

  • Thirugnanasambantham R, Elango T, Elangovan K (2020) Chlorella vulgaris microalgae as a feedstock for biofuel. Mater Today 33:3182–3185

    CAS  Google Scholar 

  • Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 76(3):733–743

    Article  CAS  PubMed  Google Scholar 

  • Uthandi S, Prunetti L, De Vera IM, Fanucci GE, Angerhofer A, Maupin-Furlow JA (2012) Enhanced archaeal laccase production in recombinant Escherichia Coli by modification of N-terminal propeptide and twin arginine translocation motifs. J Ind Microbiol 39(10):1523–1532

    CAS  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VG (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222

    Article  CAS  PubMed  Google Scholar 

  • Vegnesh R, Thankappan S, Singh BP, Kennedy ZJ, Ratul Saikia Z, Uthandi S (2019) Glycosyl hydrolases producing bacterial endophytes from Perennial Grass Species (Neyraudia reynaudiana L.) for biomass deconstruction. Madras Agric J 106(1–3):1

    Google Scholar 

  • Verardi A, De Bari I, Ricca E, Calabrò V (2012) Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Bioethanol, vol 2012. Intech Rijeka, pp 95–122

    Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11(3):301–307

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Sun J, Liu X, Sudo A, Endo T (2012) Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem 14(10):2799–2806

    Article  CAS  Google Scholar 

  • Watson NE, Prior BA, Lategan PM, Lussi M (1984) Factors in acid treated bagasse inhibiting ethanol production from D-xylose by Pachysolen tannophilus. Enzym Microb Technol 6(10):451–456

    Article  CAS  Google Scholar 

  • Wilson DB (2011) Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 14(3):259–263

    Article  CAS  PubMed  Google Scholar 

  • Wong DW, Chan VJ, Liao H, Zidwick MJ (2013) Cloning of a novel feruloyl esterase gene from rumen microbial metagenome and enzyme characterization in synergism with endoxylanases. J Indus Microbiol Biotechnol 40(3–4):287–295

    Article  CAS  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48(1):54–60

    Article  CAS  PubMed  Google Scholar 

  • Yamunasri P, Priyadharshini R, Uthandi S (2021) Evaluation of efficient transformation method for xylose reductase gene integration in Pichia pastoris GS115. Madras Agric J 107(10–12):1

    Google Scholar 

  • Yan Q, Wang L, Jiang Z, Yang S, Zhu H, Li L (2008) A xylose-tolerant Β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99(13):5402–5410

    Article  CAS  PubMed  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo CG, Meng X, Pu Y, Ragauskas AJ (2020) The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour Technol 301:122784

    Article  CAS  PubMed  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-Z, Zhang YH (2013) Cellulases: characteristics, sources, production, and applications. In: Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, polymers, vol 1, pp 131–146

    Google Scholar 

  • Zhang C-M, Jiang L, Mao Z-G, Zhang J-H, Tang L (2011a) Effects of propionic acid and pH on ethanol fermentation by Saccharomyces cerevisiae in cassava mash. Appl Biochem Biotechnol 165(3):883–891

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Siika-Aho M, Tenkanen M, Viikari L (2011b) The role of acetyl Xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed. Biotechnol Biofuels 4(1):1–10

    Article  CAS  Google Scholar 

  • Zhang L, Li X, Yong Q, Yang S-T, Ouyang J, Yu S (2016) Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. Bioresour Technol 203:173–180

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided to SU by DBT, GoI, through Indo-Russian collaboration (No. DBT/IC2/Indo-Russia/2014-16) and SERB (No. EEQ/2020/000583). Authors also thank DBT-BIOCARe for the financial support to RP and SU through the project grant No. BT/PR18134/BIC/101/795/2016 and for the support to JMF through the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Physical Biosciences Program (grant number DOE DE-FG02-05ER15650) to advance microbial bioenergy.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandran, P., Joshi, J.B., Kasirajan, L., Maupin-Furlow, J.A., Uthandi, S. (2022). Enzymatic Saccharification Technologies for Biofuel Production: Challenges and Prospects. In: Saini, J.K., Sani, R.K. (eds) Microbial Biotechnology for Renewable and Sustainable Energy. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-3852-7_11

Download citation

Publish with us

Policies and ethics