Skip to main content

Classification of Melanoma Using Efficient Nets with Multiple Ensembles and Metadata

  • Conference paper
  • First Online:
Proceedings of International Conference on Computational Intelligence

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Melanoma is one of the most treacherous forms of cancer, and its early detection is paramount for the survival rate. It is caused by anomalous multiplication of skin cells, giving that area an unusual color. In this paper, we present a method for melanoma classification based on Efficient Nets, squeeze and excitation models, attention mechanisms, and ensembling. In this work, we consider different image sizes are utilized for different Efficient Nets, to act as the backbone of our models and this plays an important role in our proposed method. The feature maps are then passed to convolution layers with a Squeeze and Excitation structure, further followed by an attention mechanism. A separate branch for patient-level data is also used to improve the results. They are combined using two novel ensemble techniques: the majority mean ensemble and the absolute correlation ensemble, to give a final prediction. We also compare our results with the basic mean ensemble to prove their superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Thompson, R.A. Scolyer, R.F. Kefford, Cutaneous melanoma. The Lancet 365(9460), 687–701 (2005). https://doi.org/10.1016/S0140-6736(05)17951-3. http://www.sciencedirect.com/science/article/pii/S0140673605179513

  2. A.J. Miller, M.C. Mihm, Melanoma. New England J. Med. 355(1), 51–65 (2006). https://doi.org/10.1056/NEJMra052166

    Article  Google Scholar 

  3. M. Tan, Q.V. Le, Efficientnet: rethinking model scaling for convolutional neural networks. CoRR (2019). http://arxiv.org/abs/1905.11946

  4. H. Choi, K. Cho, Y. Bengio, Fine-grained attention mechanism for neural machine translation. Neurocomputing 284, 171–176 (2018). https://doi.org/10.1016/j.neucom.2018.01.007. http://www.sciencedirect.com/science/article/pii/S0925231218300225

  5. J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  6. P. Ramachandran, B. Zoph, Q.V. Le, Searching for activation functions (2017)

    Google Scholar 

  7. T.T. Wong, Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn. 48(9), 2839–2846 (2015). https://doi.org/10.1016/j.patcog.2015.03.009. http://www.sciencedirect.com/science/article/pii/S0031320315000989

  8. J. Hron, A.G. de Matthews, Z. Ghahramani, Variational gaussian dropout is not bayesian (2017)

    Google Scholar 

  9. Q. Xie, M.T. Luong, E. Hovy, Q.V. Le, Self-training with noisy student improves imagenet classification (2020)

    Google Scholar 

  10. S. Gulati, R.K. Bhogal, Detection of Malignant Melanoma Using Deep Learning, in Advances in Computing and Data Sciences (Singapore, Springer Singapore, 2019), pp. 312–325

    Google Scholar 

  11. H. Nahata, S.P. Singh, Deep Learning Solutions for Skin Cancer Detection and Diagnosis (Springer International Publishing, Cham, 2020), pp. 159–182. https://doi.org/10.1007/978-3-030-40850-3_8

  12. J. Amin, A. Sharif, N. Gul, M.A. Anjum, M.W. Nisar, F. Azam, S.A.C. Bukhari, Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recogn. Lett. 131, 63–70 (2020). https://doi.org/10.1016/j.patrec.2019.11.042. http://www.sciencedirect.com/science/article/pii/S0167865519303630

  13. Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A.: Skin lesion classification using ensembles of multi-resolution efficient nets with meta data (2019)

    Google Scholar 

  14. T. DeVries, G.W. Taylor, Improved Regularization of Convolutional Neural Networks with Cutout (2017)

    Google Scholar 

  15. R. Takahashi, T. Matsubara, K. Uehara, Ricap: random image cropping and patching data augmentation for deep cnns. (PMLR, 2018), pp. 786–798. http://proceedings.mlr.press/v95/takahashi18a.html

  16. S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: regularization strategy to train strong classifiers with localizable features (2019)

    Google Scholar 

  17. T.Y. Hsiao, Y.C. Chang, H.H. Chou, C.T. Chiu, Filter-based deep-compression with global average pooling for convolutional networks. J. Syst. Architecture 95, 9–18 (2019). https://doi.org/10.1016/j.sysarc.2019.02.008. http://www.sciencedirect.com/science/article/pii/S1383762118302340

  18. J. Fan, S. Upadhye, A. Worster, Understanding receiver operating characteristic (roc) curves. Canad. J. Emerg. Med. 8(1), 19–20 (2006). https://doi.org/10.1017/S1481803500013336

    Article  Google Scholar 

  19. C. Shorten, T. Khoshgoftaar, A survey on image data augmentation for deep learning. J. Big Data 6, 1–48 (2019)

    Article  Google Scholar 

  20. A.C. Marreiros, J. Daunizeau, S.J. Kiebel, K.J. Friston, Population dynamics: variance and the sigmoid activation function. NeuroImage 42(1), 147–157 (2008). https://doi.org/10.1016/j.neuroimage.2008.04.239. http://www.sciencedirect.com/science/article/pii/S1053811908005132

  21. Y. Cui, M. Jia, T.Y. Lin, Y. Song, S. Belongie, Class-balanced loss based on effective number of samples, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  22. T.Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection (2018)

    Google Scholar 

  23. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization (2017)

    Google Scholar 

  24. V. Rotemberg, N. Kurtansky, B. Betz-Stablein, L. Caffery, E. Chousakos, N. Codella, M. Combalia, S. Dusza, P. Guitera, D. Gutman, A. Halpern, Kittler, H., K. Kose, S. Langer, K. Lioprys, J. Malvehy, S. Musthaq, J. Nanda, O. Reiter, G. Shih, A. Stratigos, P. Tschandl, J. Weber, H.P. Soyer, A patient-centric dataset of images and metadata for identifying melanomas using clinical context (2020). https://doi.org/10.34970/2020-ds01

  25. N. Codella, V. Rotemberg, P. Tschandl, M.E. Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, H. Kittler, A. Halpern, Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC) (2019)

    Google Scholar 

  26. N.C.F. Codella, D. Gutman, M.E. Celebi, B. Helba, M.A. Marchetti, S.W. Dusza, A. Kalloo, K. Liopyris, N. Mishra, H. Kittler, A. Halpern, Skin Lesion Analysis Toward Melanoma Detection: A Challenge at the 2017 International Symposium on Biomedical Imaging (isbi), Hosted by the International Skin Imaging Collaboration (ISIC) (2018)

    Google Scholar 

  27. P. Tschandl, The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions (2018). https://doi.org/10.7910/DVN/DBW86T

  28. Caruana, R., Munson, A., Niculescu-Mizil, A.: Getting the most out of ensemble selection, in Sixth International Conference on Data Mining (ICDM’06), pp. 828–833 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, V., Jhalani, H., Singh, P., Dixit, R. (2022). Classification of Melanoma Using Efficient Nets with Multiple Ensembles and Metadata. In: Tiwari, R., Mishra, A., Yadav, N., Pavone, M. (eds) Proceedings of International Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-3802-2_8

Download citation

Publish with us

Policies and ethics