Skip to main content

Hole-Filling Method Using Nonlocal Non-convex Regularization for Consumer Depth Cameras

  • Conference paper
  • First Online:
Proceedings of International Conference on Computational Intelligence

Part of the book series: Algorithms for Intelligent Systems ((AIS))

  • 449 Accesses

Abstract

Recovery of correct depth values in missing regions of depth maps captured using consumer depth cameras is a challenging problem in the field of computer vision. Applications like robotic vision, automatic navigation and imperfection of captured data with existing sensors, hole-filling in depth maps is a significant research area. Imprecision of estimated depth values of missing regions increases especially at depth discontinuities. To overcome this remarkable complication we model the estimated depth map as a non-local extension of discontinuity-adaptive MRF. The non-convex energy function can be optimized by exploiting the graduated non-convexity algorithm. Experiments with both synthetic and real-world data demonstrate the superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Stommel, M. Beetz, W. Xu, Inpainting of missing values in the Kinect sensor’s depth maps based on background estimates. IEEE Sensor J. 14(4), 1107–1116 (2013)

    Article  Google Scholar 

  2. J. Yang, X. Ye, K. Li, C. Hou, Y. Wang, Color-guided depth recovery from RGB-D data using an adaptive autoregressive model. IEEE Trans. Image Process. 23(8), 3443–3458 (2014)

    Article  MathSciNet  Google Scholar 

  3. K. Matsuo, Y. Aoki, Depth image enhancement using local tangent plane approximations, in Computer Vision and Pattern Recognition (2015), pp. 3574–3583

    Google Scholar 

  4. X. Liu, D. Zhai, R. Chen, X. Ji, D. Zhao, W. Gao, Depth restoration from RGB-D data via joint adaptive regularization and thresholding on manifolds. IEEE Trans. Image Process. 28(3), 1068–1079 (2018)

    Article  MathSciNet  Google Scholar 

  5. F. Ma, G.V. Cavalheiro, S. Karaman, Self-supervised sparseto-dense: self-supervised depth completion from lidar and monocular camera, in International Conference on Robotics and Automation (IEEE, 2019), pp. 3288–3295

    Google Scholar 

  6. Z. Huang, J. Fan, S. Cheng, S. Yi, X. Wang, H. Li, Hmsnet: Hierarchical multi-scale sparsity-invariant network for sparse depth completion. IEEE Trans. Image Process. 29, 3429–3441 (2019)

    Article  Google Scholar 

  7. Y. Zhang, T. Funkhouser, Deep depth completion of a single RGB-D image, in Computer Vision and Pattern Recognition (2018), pp. 175–185

    Google Scholar 

  8. K. Ramnath, A.N. Rajagopalan, Discontinuity-adaptive shape from focus using a non-convex prior, in Joint Pattern Recognition Symposium (Springer, Berlin, 2009), pp. 181–190

    Google Scholar 

  9. D. Scharstein, C. Pal, Learning conditional random fields for stereo, in Computer Vision and Pattern Recognition, IEEE 1–8 (2007)

    Google Scholar 

  10. S. Song, S.P. Lichtenberg, J. Xiao, Sun RGB-D: a RGB-D scene understanding benchmark suite, in Computer Vision and Pattern Recognition (2015), pp. 567–576

    Google Scholar 

  11. S.Z. Li, Markov Random Field Modeling in Image Analysis (Springer Science and Business Media, 2009)

    Google Scholar 

  12. A. Buades, B. Coll, J.-M. Morel, A non-local algorithm for image denoising, in Computer Vision and Pattern Recognition, vol 2 (IEEE, 2005), pp. 60–65

    Google Scholar 

  13. D.H. Salvadeo, N.D. Mascarenhas, A.L. Levada, Nonlocal Markovian models for image denoising. J. Electronic Imaging 25(1) (2016)

    Google Scholar 

  14. S. Jonna, S. Satapathy, R.R. Sahay, Super-resolution image defencing using a nonlocal nonconvex prior. Appl. Optics 57(2), 322–333 (2018)

    Article  Google Scholar 

  15. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Susstrunk, Slic superpixels. Tech. Rep. (2010)

    Google Scholar 

  16. H. Xue, S. Zhang, D. Cai, Depth image inpainting: improving low rank matrix completion with low gradient regularization. IEEE Trans. Image Process. 26(9), 4311–4320 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Satapathy, S. (2022). Hole-Filling Method Using Nonlocal Non-convex Regularization for Consumer Depth Cameras. In: Tiwari, R., Mishra, A., Yadav, N., Pavone, M. (eds) Proceedings of International Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-3802-2_19

Download citation

Publish with us

Policies and ethics