Skip to main content

Advanced Microchannel Fabrication Technologies for Biomedical Devices

  • Chapter
  • First Online:
Advanced Micro- and Nano-manufacturing Technologies

Abstract

In recent times, microchannel and its fabrication have found immense recognition in biomedical applications. It is because, the microchannels provide devices that are economical and portable. They can be widely used in miniaturized biomedical devices with lab-on-a-chip concept such as electrochemical sensors, microfluidic devices, circuit patterning and microreactors. Thus, keeping in view the importance of the microchannels, this chapter reviews several advanced fabrication technologies of microchannels such as lithography, microwire moulding, imprinting, direct laser micromachining and laser-induced plasma-assisted ablation, each with many advantages and disadvantages. A brief study on the operation principle of each of these fabrication processes, its process parameters, process capabilities and its recent advancements is conveyed. It has been found that laser has certain advantages over the other fabrication technologies. It has proved to be most time saving and precise. As such, discussion on the laser fabrication technology of microchannel is presented with more emphasis on it. Additionally, some of the experimental results of microchannel formation and its thermal bonding to get a closed microchannel have also been presented. This chapter signifies the diverse applications of the microchannels as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Daghighi, Y.: Microfluidic technology and its biomedical applications. J. Ther. Eng. 1(7), 621–626 (2015)

    MathSciNet  Google Scholar 

  2. Pan, C., Chen, K., Liu, B., Ren, L., Wang, J., Hu, Q., Liang, L., Zhou, J., Jiang, L.: Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices. J. Mater. Process. Technol. 240, 314–323 (2017)

    Article  Google Scholar 

  3. Xu, S., Liu, B., Pan, C., Ren, L., Tang, B., Hu, Q., Jiang, L.: Ultrafast fabrication of micro-channels and graphite patterns on glass by nanosecond laser-induced plasma-assisted ablation (LIPAA) for electrofluidic devices. J. Mater. Process. Technol. 247, 204–213 (2017)

    Article  Google Scholar 

  4. Kim, H.G., Park, M.S.: Circuit patterning using laser on transparent material. Surf. Coat. Technol. 315, 377–384 (2017)

    Article  Google Scholar 

  5. Suryawanshi, P.L., Gumfekar, S.P., Bhanvase, B.A., Sonawane, S.H., Pimplapure, M.S.: A review on microreactors: reactor fabrication, design, and cutting-edge applications. Chem. Eng. Sci. 189, 431–448 (2018)

    Article  Google Scholar 

  6. Chandra, P., Segal, E.: Nanobiosensors for Personalized and Onsite Biomedical Diagnosis. The Institution of Engineering and Technology (2016)

    Google Scholar 

  7. Shirzadfar, H., Khanahmadi, M.: Review on structure, function and applications of microfluidic systems. Int. J. Biosens. Bioelectron. 4(6), 263–265 (2018)

    Google Scholar 

  8. Nieto, D., Delgado, T., Flores-Arias, M.T.: Fabrication of microchannels on soda-lime glass substrates with a Nd: YVO4 laser. Opt. Lasers Eng. 63, 11–18 (2014)

    Article  Google Scholar 

  9. Singh, S.S., Baruah, P.K., Khare, A., Joshi, S.N.: Effect of laser beam conditioning on fabrication of clean micro-channel on stainless steel 316L using second harmonic of Q-switched Nd: YAG laser. Opt. Laser Technol. 99, 107–117 (2018)

    Article  Google Scholar 

  10. Kim, K.R., Kim, H.J., Choi, H.I., Shin, K.S., Cho, S.H., Choi, B.D.: Ultrafast laser microfabrication of a trapping device for colorectal cancer cells. Microelectron. Eng. 140, 1–5 (2015)

    Article  Google Scholar 

  11. Li, G., Xu, S.: Small diameter microchannel of PDMS and complex three-dimensional microchannel network. Mater. Des. 81, 82–86 (2015)

    Article  Google Scholar 

  12. Prakash, S., Kumar, S.: Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask. Opt. Laser Technol. 94, 180–192 (2017)

    Article  Google Scholar 

  13. Kanca, Y., Milner, P., Dini, D., Amis, A.A.: Tribological evaluation of biomedical polycarbonate urethanes against articular cartilage. J. Mech. Behav. Biomed. Mater. 82, 394–402 (2018)

    Article  Google Scholar 

  14. Mehendale, S.S., Jacobi, A.M., Shah, R.K.: Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. ASME. Appl. Mech. Rev. 53(7), 175–193 (2000)

    Article  Google Scholar 

  15. Kandlikar, S.G., Grande, W.J.: Evolution of microchannel flow passages–thermohydraulic performance and fabrication technology. Heat Transf. Eng. 24(1), 3–17 (2003)

    Article  Google Scholar 

  16. Effati, E., Pourabbas, B.: New portable microchannel molding system based on micro-wire molding, droplet formation studies in circular cross-section microchannel. Mater. Today Commun. 16, 119–123 (2018)

    Article  Google Scholar 

  17. Kumar, U., Panda, D., Biswas, K.G.: Non-lithographic copper-wire based fabrication of micro-fluidic reactors for biphasic flow applications. Chem. Eng. J. 344, 221–227 (2018)

    Article  Google Scholar 

  18. Su, S., Jing, G., Zhang, M., Liu, B., Zhu, X., Wang, B., Fu, M., Zhu, L., Cheng, J., Guo, Y.: One-step bonding and hydrophobic surface modification method for rapid fabrication of polycarbonate-based droplet microfluidic chips. Sens. Actuators, B Chem. 282, 60–68 (2019)

    Article  Google Scholar 

  19. Liu, Y., Ganser, D., Schneider, A., Liu, R., Grodzinski, P., Kroutchinina, N.: Microfabricated polycarbonate CE devices for DNA analysis. Anal. Chem. 73(17), 4196–4201 (2001)

    Article  Google Scholar 

  20. Xu, J., Locascio, L., Gaitan, M., Lee, C.S.: Room-temperature imprinting method for plastic microchannel fabrication. Anal. Chem. 72(8), 1930–1933 (2000)

    Article  Google Scholar 

  21. Yao, P., Schneider, G.J., Prather, D.W.: Three-dimensional lithographical fabrication of microchannels. J. Microelectromech. Syst. 14(4), 799–805 (2005)

    Article  Google Scholar 

  22. Hirschbiel, A.F., Geyer, S., Yameen, B., Welle, A., Nikolov, P., Giselbrecht, S., Scholpp, S., Delaittre, G., Barner-Kowollik, C.: Photolithographic patterning of 3D-formed polycarbonate films for targeted cell guiding. Adv. Mater. 27(16), 2621–2626 (2015)

    Article  Google Scholar 

  23. Retolaza, A., Juarros, A., Ramiro, J., Merino, S.: Thermal roll to roll nanoimprint lithography for micropillars fabrication on thermoplastics. Microelectron. Eng. 193, 54–61 (2018)

    Article  Google Scholar 

  24. Wu, H.C., Xu, X., He, M., Zhang, M., Ma, K.J., Bao, M.: Fabrication of size-tunable antireflective nanopillar array using hybrid nano-patterning lithography. Surf. Coat. Technol. 240, 413–418 (2014)

    Article  Google Scholar 

  25. Chen, P.C., Pan, C.W., Lee, W.C., Li, K.M.: Optimization of micromilling microchannels on a polycarbonate substrate. Int. J. Precis. Eng. Manuf. 15(1), 149–154 (2014)

    Article  Google Scholar 

  26. Getu, H., Ghobeity, A., Spelt, J.K., Papini, M.: Abrasive jet micromachining of acrylic and polycarbonate polymers at oblique angles of attack. Wear 265(5–6), 888–901 (2008)

    Article  Google Scholar 

  27. Zhang, L., Wang, W., Ju, X.J., Xie, R., Liu, Z., Chu, L.Y.: Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv. 5(8), 5638–5646 (2015)

    Article  Google Scholar 

  28. Kang, J.W., Kim, J.S., Kim, J.J.: Optimized oxygen plasma etching of polycarbonate for low-loss optical waveguide fabrication. Jpn. J. Appl. Phys. 40(5R), 3215 (2001)

    Article  Google Scholar 

  29. Jia, Y., Jiang, J., Ma, X., Li, Y., Huang, H., Cai, K., Cai, S., Wu, Y.: PDMS microchannel fabrication technique based on microwire-molding. Chin. Sci. Bull. 53(24), 3928–3936 (2008)

    Google Scholar 

  30. McUsic, A.C., Lamba, D.A., Reh, T.A.: Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33(5), 1396–1405 (2012)

    Article  Google Scholar 

  31. Laviano, F., Ghigo, G., Mezzetti, E., Hollmann, E., Wördenweber, R.: Control of the vortex flow in microchannel arrays produced in YBCO films by heavy-ion lithography. Phys. C 470(19), 844–847 (2010)

    Article  Google Scholar 

  32. Wang, S., Wang, X., Wang, L., Pu, Q., Du, W., Guo, G.: Plasma-assisted alignment in the fabrication of microchannel-array-based in-tube solid-phase microextraction microchips packed with TiO2 nanoparticles for phosphopeptide analysis. Anal. Chim. Acta 1018, 70–77 (2018)

    Article  Google Scholar 

  33. Zhai, H., Li, J., Chen, Z., Su, Z., Liu, Z., Yu, X.: A glass/PDMS electrophoresis microchip embedded with molecular imprinting SPE monolith for contactless conductivity detection. Microchem. J. 114, 223–228 (2014)

    Article  Google Scholar 

  34. Lei, J.D., Tong, A.J.: Preparation of Zl-Phe-OH-NBD imprinted microchannel and its molecular recognition study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61(6), 1029–1033 (2005)

    Article  Google Scholar 

  35. McCann, R., Bagga, K., Groarke, R., Stalcup, A., Vázquez, M., Brabazon, D.: Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd: YAG laser ablation. Appl. Surf. Sci. 387, 603–608 (2016)

    Article  Google Scholar 

  36. Wu, T., Ke, C., Wang, Y.: Fabrication of trapezoidal cross-sectional microchannels on PMMA with a multi-pass translational method by CO2 laser. Optik 183, 953–961 (2019)

    Article  Google Scholar 

  37. Mohammed, M.K., Umer, U., Al-Ahmari, A.: Optimization of Nd: YAG laser for microchannels fabrication in alumina ceramic. J. Manuf. Process. 41, 148–158 (2019)

    Article  Google Scholar 

  38. Singh, S.S., Khare, A., Joshi, S.N.: Fabrication of microchannel on polycarbonate below the laser ablation threshold by repeated scan via the second harmonic of Q-switched Nd: YAG laser. J. Manuf. Process. 55, 359–372 (2020)

    Article  Google Scholar 

  39. Sugioka, K., Midorikawa, K., Yamaoka, H., Gomi, Y., Otsuki, M., Hong, M.H., Wu, D.J., Wong, L.L., Chong, T.C.: Glass microprocessing by laser-induced plasma-assisted ablation: fundamental to industrial applications. In: Nonresonant Laser-Matter Interaction (NLMI-11), pp. 1–10. St. Petersburg (2003)

    Google Scholar 

  40. Sarma, U., Joshi, S.N.: Machining of micro-channels on polycarbonate by using Laser-Induced Plasma Assisted Ablation (LIPAA). Opt. Laser Technol. 128, 106257 (2020)

    Google Scholar 

  41. Pallav, K., Saxena, I., Ehmann, K.F.: Comparative assessment of the laser-induced plasma micromachining and the ultrashort pulsed laser ablation processes. J. Micro Nano-Manuf. 2(3), 031001 (2014)

    Google Scholar 

  42. Bhandari, S., Murnal, M., Cao, J., Ehmann, K.: Comparative experimental investigation of micro-channel fabrication in Ti alloys by laser ablation and laser-induced plasma micro-machining. Proc. Manuf. 34, 418–423 (2019)

    Google Scholar 

  43. Malhotra, R., Saxena, I., Ehmann, K., Cao, J.: Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes. CIRP Ann. 62(1), 211–214 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikrishna N. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarma, U., Chandra, P., Joshi, S.N. (2022). Advanced Microchannel Fabrication Technologies for Biomedical Devices. In: Joshi, S.N., Chandra, P. (eds) Advanced Micro- and Nano-manufacturing Technologies. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-3645-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3645-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3644-8

  • Online ISBN: 978-981-16-3645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics