Skip to main content

Rheological Behavior of Recycled Plastics, Blends and Composites

  • Chapter
  • First Online:
Recent Developments in Plastic Recycling

Abstract

Rheological properties are useful in evaluating materials performance during processing operations. Rheology is a sensitive tool in identifying and/or detecting any microstructural changes that is directly related to mechanical properties of the final products. In order for polymer wastes to be reprocessed in standard plastics equipment and produce high yields of molded and film products, the rheological properties must first be understood. Recent development in the green polymer composite has attracted a significant interest to sustain the ecological friendliness of the Recycled poly(ethylene terephthalate):rPET (rPET) and recycled poly(propylene) (rPP) blend. The common problem during polymer recycling is the degradation of the polymer that leads to the reduction of its molecular weight (Mw). Reprocessing at high temperatures with thermal exposure, shear as well as the presence of moisture and physical contaminants (poly(ethylene) (PE), poly(vinyl chloride) (PVC, adhesives) lead to a remarkable Mw” loss. This chapter presents an overview of rheological properties of plastic waste blends and composites. It mainly focuses on rPET and rPP and natural fibers composites of recycled polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari M, Zadhoush A, Haghighat M (2007) PET/PP blending by using PP-g-MA synthesized by solid phase. J Appl Polym Sci 104(6):3986–3993

    Article  CAS  Google Scholar 

  • Ardekani SM, Dehghani A, Al-Maadeed MA, Wahit MU, Hassan A (2014) Mechanical and thermal properties of recycled poly(ethylene terephthalate) reinforced newspaper fiber composites. Fibers Polym 15(7):1531–1538

    Article  CAS  Google Scholar 

  • Asensio M, Nuñez K, Guerrero J, Herrero M, Merino JC, Pastor JM (2020) Rheological modification of recycled poly (ethylene terephthalate): blending and reactive extrusion. Polym Degrad Stab 179:109258

    Google Scholar 

  • Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch ML (2001) Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene. J Mater Sci 36(11):2607–2613

    Article  CAS  Google Scholar 

  • Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41(7):1453–1477

    Article  CAS  Google Scholar 

  • Baccouch Z, Mbarek S, Jaziri M (2017) Experimental investigation of the effects of a compatibilizing agent on the properties of a recycled poly (ethylene terephthalate)/polypropylene blend. Polym Bull 74(3):839–856

    Article  CAS  Google Scholar 

  • Baldenegro-Perez LA, Navarro-Rodriguez D, Medellin-Rodriguez FJ, Hsiao B, Avila-Orta CA, Sics I (2014) Molecular weight and crystallization temperature effects on poly (ethylene terephthalate) (PET) homopolymers, an isothermal crystallization analysis. Polymers 6(2):583–600

    Article  CAS  Google Scholar 

  • Bata A, Toth G, Belina K (2017) Melt shear viscosity of original and recycled pet in wide range shear rate melt shear viscosity. Commun-Sci Lett Univ Zilina 19(4):20–23

    Google Scholar 

  • Borchani KE, Carrot C, Jaziri M (2019) Rheological behavior of short Alfa fibers reinforced Mater-Bi® biocomposites. Polym Test 77:105–895

    Article  CAS  Google Scholar 

  • Bourmaud A, Le Duigou A, Baley C (2011) What is the technical and environmental interest in reusing a recycled polypropylene–hemp fiber composite? Polym Degrad Stab 96(10):1732–1739

    Article  CAS  Google Scholar 

  • Cruz SA, Scuracchio CH, Fitaroni LB, Oliveira ÉC (2017) The use of melt rheology and solution viscometry for degradation study of post-consumer poly (ethylene terephthalate): the effects of the contaminants, reprocessing and solid state polymerization. Polym Test 60:236–241

    Article  CAS  Google Scholar 

  • Cui YY, Dong BJ, Li BL, Li SC (2013) Properties of polypropylene/poly (ethylene terephthalate) thermostimulative shape memory blends reactively compatibilized by maleic anhydride grafted polyethylene-octene elastomer. Int J Polym Mater Polym Biomater 62(13):671–677

    Article  CAS  Google Scholar 

  • Datta J, Kopczyńska P (2016) From polymer waste to potential main industrial products: Actual state of recycling and recovering. Crit Rev Environ Sci Technol 46(10):905–946

    Article  CAS  Google Scholar 

  • de Souza AMC, Caldeira CB (2015) An investigation on recycled PET/PP and recycled PET/PP‐EP compatibilized blends: rheological, morphological, and mechanical properties. J Appl Polym Sci 132(17)

    Google Scholar 

  • Dealy JM, Wissbrun KF (1999) Linear viscoelasticity. In: Melt rheology and its role in plastics processing. Springer, Dordrecht, pp 42–102

    Google Scholar 

  • Dehghani A, Ardekani SM, Al-Maadeed MA, Hassan A, Wahit MU (2013) Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater Des 1980–2015(52):841–848

    Article  CAS  Google Scholar 

  • Devendra R, Hatzikiriakos SG, Vogel R (2006) Rheology of metallocene polyethylene-based nanocomposites: influence of graft modification. J Rheol 50(4):415–434

    Article  CAS  Google Scholar 

  • Duarte IS, Tavares AA, Lima PS, Andrade DL, Carvalho LH, Canedo EL, Silva SM (2016) Chain extension of virgin and recycled poly (ethylene terephthalate): effect of processing conditions and reprocessing. Polym Degrad Stab 124:26–34

    Article  CAS  Google Scholar 

  • Elamri A, Zdiri K, Harzallah O, Lallam A (2017) Progress in polyethylene terephthalate recycling. In: Polyethylene terephthalate: uses, properties and degradation. Nova Science Publishers Inc., New York, pp 155–186

    Google Scholar 

  • Gahleitner M, Bernreitner K, Neißl W (1994) Correlations between rheological and mechanical properties of mineral filled polypropylene compounds. J Appl Polym Sci 53(3):283–289

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Heffner G, Vlassopoulos D, Christodoulou K (1997) Rheological characterization of polyethylene terephthalate resins using a multimode Phan-Tien-Tanner constitutive relation. Rheol Acta 36(5):568–578

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Rathod N, Muliawan EB (2005) The effect of nanoclays on the processibility of polyolefins. Polym Eng Sci 45(8):1098–1107

    Article  CAS  Google Scholar 

  • Heino MT, Vainio TP (1996) Effect of viscosity ratio and processing conditions on the morphology of blends of liquid crystalline polymer and. Handbook of applied polymer processing technology 31:233

    CAS  Google Scholar 

  • Honorato LR, de Fátima RP, dos Anjos SA, Moreira LP (2020) Synergistic effects of organoclay Cloisite 15A on recycled polyethylene terephthalate. J Mark Res 9(6):13087–13096

    CAS  Google Scholar 

  • Incarnato L, Scarfato P, Acierno D (1999) Rheological and mechanical properties of recycled polypropylene. Polym Eng Sci 39(4):749–755

    Article  CAS  Google Scholar 

  • Inoya H, Wei Leong Y, Klinklai W, Takai Y, Hamada H (2012) Compatibilization of recycled poly (ethylene terephthalate) and polypropylene blends: effect of compatibilization on blend toughness, dispersion of minor phase, and thermal stability. J Appl Polym Sci 124(6):5260–5269

    CAS  Google Scholar 

  • Inoya H, Wei Leong Y, Klinklai W, Thumsorn S, Makata Y, Hamada H (2012) Compatibilization of recycled poly (ethylene terephthalate) and polypropylene blends: Effect of polypropylene molecular weight on homogeneity and compatibility. J Appl Polym Sci 124(5):3947–3955

    Article  CAS  Google Scholar 

  • Jankauskaite V, Macijauskas G, Lygaitis R (2008) Polyethylene terephthalate waste recycling and application possibilities: a review. Mater Sci (medžiagotyra) 14(2):119–127

    Google Scholar 

  • Kazemi Y (2013) Mechanical and morphological characterization of wood plastic composites based on municipal plastic waste

    Google Scholar 

  • Kostov G, Atanassov A, Kiryakova D (2013) Rheological behavior of recycled and virgin polyethyleneterephthalate and mixtures of them. Prog Rubber Plast Recycl Technol 29(4):255–270

    Article  Google Scholar 

  • Kruse M, Wagner MH (2017) Rheological and molecular characterization of long-chain branched poly (ethylene terephthalate). Rheol Acta 56(11):887–904

    Article  CAS  Google Scholar 

  • Kuzmanović M, Delva L, Cardon L, Ragaert K (2016) The effect of injection molding temperature on the morphology and mechanical properties of PP/PET blends and microfibrillar composites. Polymers 8(10):355

    Article  CAS  Google Scholar 

  • La Mantia FP (1999) Mechanical properties of recycled polymers. In: Macromolecular symposia. Weinheim, Germany, Wiley‐VCH Verlag GmbH & Co. KGaA, pp 167–172

    Google Scholar 

  • Lopez MAC, Lasierra PZ, Guajardo SJS, Camas MEP, García EP, Ariso CT, Ramiro JS (2014) U.S. Patent No. 8,821,776. Washington, DC, U.S. Patent and Trademark Office

    Google Scholar 

  • Maddah HA (2016) Polypropylene as a promising plastic: a review. Am J Polym Sci 6(1):1–11

    CAS  Google Scholar 

  • Nait-Ali A (2016) A non-local model of a randomly fibered medium

    Google Scholar 

  • Najafi SK (2013) Use of recycled plastics in wood plastic composites–a review. Waste Manag 33(9):1898–1905

    Article  Google Scholar 

  • Novo PJ, Silva JF, Nunes JP, Marques AT (2016) Pultrusion of fiber reinforced thermoplastic pre-impregnated materials. Compos B Eng 89:328–339

    Article  CAS  Google Scholar 

  • Oromiehie A, Mamizadeh A (2004) Recycling PET beverage bottles and improving properties. Polym Int 53(6):728–732

    Article  CAS  Google Scholar 

  • Pang YX, Jia DM, Hu HJ, Hourston DJ, Song M (2000) Effects of a compatibilizing agent on the morphology, interface and mechanical behavior of polypropylene/poly (ethylene terephthalate) blends. Polymer 41(1):357–365

    Article  CAS  Google Scholar 

  • Papadopoulou CP, Kalfoglou NK (2000) Comparison of compatibilizer effectiveness for PET/PP blends: their mechanical, thermal and morphology characterization. Polymer 41(7):2543–2555

    Article  CAS  Google Scholar 

  • Pawlak A, Pluta M, Morawiec J, Galeski A, Pracella M (2000) Characterization of scrap poly (ethylene terephthalate). Eur Polymer J 36(9):1875–1884

    Article  CAS  Google Scholar 

  • Pereira APDS, Silva MHPD, Lima Júnior ÉP, Paula ADS, Tommasini FJ (2017) Processing and characterization of PET composites reinforced with geopolymer concrete waste. Mater Res 20:411–420

    Article  Google Scholar 

  • Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1(6):1–11

    Article  CAS  Google Scholar 

  • Rosnan RM, Arsad A (2013) Effect of MMT concentrations as reinforcement on the properties of recycled PET/HDPE nanocomposites. J Polym Eng 33(7):615–623

    Article  CAS  Google Scholar 

  • Salminen P (2013) Using recycled polyethylene terephthalate (PET) in the production of bottle trays

    Google Scholar 

  • Sangroniz L, Ruiz JL, Sangroniz A, Fernández M, Etxeberria A, Müller AJ, Santamaría A (2019) Polyethylene terephthalate/low density polyethylene/titanium dioxide blend nanocomposites: morphology, crystallinity, rheology, and transport properties. J Appl Polym Sci 136(4):46986

    Article  CAS  Google Scholar 

  • Shi WX, Li YY, Xu J, Ma GQ, Sheng J (2007) Morphology development in multi-component polymer blends: I composition effect on phase morphology in PP/PET polymer blends. J Macromol Sci Part B Phys 46(6):1115–1126

    Article  CAS  Google Scholar 

  • Stanciu MD, Teodorescu Draghicescu H, Tamas F, Terciu OM (2020) Mechanical and rheological behavior of composites reinforced with natural fibers. Polymers 12(6):1402

    Article  CAS  Google Scholar 

  • Suradi NL (2015) Preparation and characterisation of Kenaf Bast fiber reinforced recycled polypropylene/recycled polymide 6 composites (Master dissertation, Universiti Teknologi Malaysia)

    Google Scholar 

  • Tavares AA, Silva DF, Lima PS, Andrade DL, Silva SM, Canedo EL (2016) Chain extension of virgin and recycled polyethylene terephthalate. Polym Test 50:26–32

    Article  CAS  Google Scholar 

  • Thumsorn S, Yamada K, Leong YW, Hamada H (2013) Thermal decomposition kinetic and flame retardancy of CaCO3 filled recycled polyethylene terephthalate/recycled polypropylene blend. J Appl Polym Sci 127(2):1245–1256

    Article  CAS  Google Scholar 

  • Utracki LA (1991) On the viscosity-concentration dependence of immiscible polymer blends. J Rheol 35(8):1615–1637

    Article  CAS  Google Scholar 

  • Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fiber reinforced composites. Compos Struct 54(2–3):355–360

    Article  Google Scholar 

  • Van Kets K, Delva L, Ragaert K (2019) Structural stabilizing effect of SEBSgMAH on a PP-PET blend for multiple mechanical recycling. Polym Degrad Stab 166:60–72

    Article  CAS  Google Scholar 

  • Wyser Y, Leterrier Y, Månson JA (2000) Effect of inclusions and blending on the mechanical performance of recycled multilayer PP/PET/SiOx films. J Appl Polym Sci 78(4):910–918

    Article  CAS  Google Scholar 

  • Zander NE, Gillan M, Burckhard Z, Gardea F (2019) Recycled polypropylene blends as novel 3D printing materials. Addit Manuf 25:122–130

    CAS  Google Scholar 

  • Zdiri K, Elamri A, Hamdaoui M, Harzallah O, Khenoussi N, Brendlé J (2018) Reinforcement of recycled PP polymers by nanoparticles incorporation. Green Chem Lett Rev 11(3):296–311

    Article  CAS  Google Scholar 

  • Zdiri K, Elamri A, Hamdaoui M, Khenoussi N, Harzallah O, Brendle J (2019) Impact of Tunisian clay nanofillers on structure and properties of post-consumer polypropylene-based nanocomposites. J Thermoplast Compos Mater 32(9):1159–1175

    Article  CAS  Google Scholar 

  • Zhu J, He N, Wang Q, Yuan G, Wen D, Yu G, Jia Y (2015) The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Sci Total Environ 511:777–785

    Article  CAS  Google Scholar 

  • Zhu Y, Liang C, Bo Y, Xu S (2015) Non-isothermal crystallization behavior of compatibilized polypropylene/recycled polyethylene terephthalate blends. J Therm Anal Calorim 119(3):2005–2013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mat Uzir Wahit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Othman, N., Marzuki, N.H., Din, S.F.M., Arsad, A., Yusoff, N.I.S.M., Wahit, M.U. (2021). Rheological Behavior of Recycled Plastics, Blends and Composites. In: Parameswaranpillai, J., Mavinkere Rangappa, S., Gulihonnehalli Rajkumar, A., Siengchin, S. (eds) Recent Developments in Plastic Recycling. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-16-3627-1_9

Download citation

Publish with us

Policies and ethics