Skip to main content

Metagenomic Approaches for Insect Symbionts

  • Chapter
  • First Online:
Microbial Approaches for Insect Pest Management

Abstract

Insects, the most successful groups in animal kingdom, harbor diverse groups of microbes, such as bacteria, archaea, fungi, protozoa, and viruses, which profoundly influence their survival and adaptations over a wide range of ecological niches. These microbes are associated with their host insects permanently or transiently and such associations may be beneficial or harmful to the host insect under various instances. Attempts were made earlier to characterize insect microbiome by isolation and cultivation techniques and polymerase chain reaction (PCR)-based cloning methods that resulted in identification of a few groups of microbes. The metagenomic approaches under the next-generation sequencing platforms provide unparallel opportunities to understand the composition of the microbiome and their functional role in the biology of the insects, thus expanding our understanding from a single microbial species to the whole community. These approaches provide an ample opportunity to understand the components of the microbiome that can potentially and collectively affect the behavior and physiological traits of insects through genetic and metabolic interactions. For instance, endosymbionts (i.e., microbes that live inside host cells or tissues) depend on the insect hosts for obtaining nutrients, provide fitness advantages to their insect hosts in terms of the breakdown of plant cell wall components, viz, cellulose, lignocelluloses, and xylan, supplying essential amino acids and vitamins to host insects, thereby upgrading the nutrient status of their diet, detoxification of lethal insecticide molecules, plant defensive compounds such as phenolics, and production of anti-microbial peptides against insect pathogens. However, in some instances, the microbes may also be pathogenic to the insect hosts by producing insecticidal toxins, which reduce viability and cause morbidity.

The culture-independent metagenomic approach allows us to characterize a variety of genes that microbes possess or are expressing, which signifies ‘what they are doing’ within the host. It also enables us to compare the performance of insect with changes in their microbiome composition. These approaches have a wide range of applications apart from the study of insect’s microbial ecology. The microbiota associated with wood-feeding beetles can be exploited as source of novel enzymes in industrial bioprocesses. The information on microbial genes and enzymes involved in cellulose hydrolysis, vitamin production, and nitrogen fixation can be useful in improving the reliability and efficiency of industrial processes. Furthermore, insect–microbe relationships could be manipulated to improve pest control, by decreasing pest’s fitness or by increasing the efficacy of pest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10(4):537–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3(6):489–498

    CAS  PubMed  Google Scholar 

  • Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 3(2):243–251

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aminov RI, Walker AW, Duncan SH, Harmsen HJ, Welling GW, Flint HJ (2006) Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale. Appl Environ Microbiol 72(9):6371–6376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37. https://doi.org/10.1038/ismej.2009.82

    Article  PubMed  Google Scholar 

  • Bag S, Saha B, Mehta O, Anbumani D et al (2016) An improved method for high qualitymetagenomics DNA extraction from human and environmental samples. Sci Rep 6. https://doi.org/10.1038/srep26775

  • Beard CB, O'Neill SL, Tesh RB, Richards FF, Aksoy S (1993) Modification of arthropod vector competence via symbiotic bacteria. Parasitol Today 9(5):179–183

    CAS  PubMed  Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4(4):581–591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beard CB, Cordon-Rosales C, Durvasula RV (2002) Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annu Rev Entomol 47:123–141

    CAS  PubMed  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1986) Ecology: individuals, populations and communities. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Behar A, Yuval B, Jurkevitch E (2005) Enterobacteriamediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14(9):2637–2643

    CAS  PubMed  Google Scholar 

  • Berchtold M, Chatzinotas A, Schonhuber W, Brune A, Amann R, Hahn D, Konig H (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization with rRNA-targeted probes. Arch Microbiol 172:407–416

    CAS  PubMed  Google Scholar 

  • Bonning BC, Chougule NP (2014) Delivery of intrahemocoelic peptides for insect pest management. Trends Biotechnol 32(2):91–98

    CAS  PubMed  Google Scholar 

  • Breeuwer JAJ, Werren JH (1995) Hybrid breakdown between two haplo diploid species: the role of nuclear and cytoplasmic genes. Evolution 49(4):705–717

    PubMed  Google Scholar 

  • Breznak JA (2004) Invertebrates-insects. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 191–203

    Google Scholar 

  • Brinkmann N, Martens R, Tebbc CC (2008) Origin and diversity of metabolically active gut bacteria from laboratorybred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl Environ Microbiol 74(23):7189–7196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bromberg JS, Fricke WF, Brinkman CC, Simon T, Mongodin EF (2015) Microbiota: implications for immunity and transplantation. Nat Rev Nephrol 11(6):342–353

    CAS  PubMed  Google Scholar 

  • Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341(6146):667–669

    CAS  PubMed  Google Scholar 

  • Buchner P (1965) Endosymbioses of animals with plant microoorganisms. John Wiley and Sons, Chichester, UK

    Google Scholar 

  • Campbell BC (1990) On the role of microbial symbiotes in herbivorous insects. In: Bernays EA (ed) Insect-plant interactions. CRC Press p, Boca Raton, FL, pp 1–44

    Google Scholar 

  • Cariou M, Ribière C, Morlière S et al (2018) Comparing 16S rDNA amplicon sequencing and hybridization capture for pea aphid microbiota diversity analysis. BMC Res Notes 11:461. https://doi.org/10.1186/s13104-018-3559-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casu RE, Eisemann CH, Vuocolo T, Tellam RL (1996) The major excretory/secretory protease from Lucilia cuprina larvae is also a gut digestive protease. Int J Parasitol 26(6):623–628

    CAS  PubMed  Google Scholar 

  • Cazemier AE, Hackstein JHP, Op den Camp HJM, Rosenberg J, van der Drift C (1997) Bacteria in the intestinal tract of different species of arthropods. Microb Ecol 33:189–197

    CAS  PubMed  Google Scholar 

  • Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69(2):330–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, Turelli M (2014) Comment on "the hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia". Science 345(6200):1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charnley AK, Hunt J, Dillon RJ (1985) The germ-free culture of desert locusts, Schistocerca gregaria. J Insect Physiol 31(6):477–485

    Google Scholar 

  • Chaves S, Neto M, Tenreiro R (2009) Insect-symbiont systems: from complex relationships to biotechnological applications. Biotechnol J 4(12):1753–1765

    CAS  PubMed  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24. 106–112

    PubMed Central  Google Scholar 

  • Chen B, Yu T, Xie S, Du K, Liang X, Lan Y, Sun C, Lu X, Shao Y (2018) Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci Data 5:180285. https://doi.org/10.1038/sdata.2018.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung SW, Tishler PV, Atkins L, Sengupta SK, Modest EJ, Forget BG (1977) Gene mapping by fluorescent in situ hybridization. Cell Biol Int Rep 1(3):255–262

    CAS  PubMed  Google Scholar 

  • Chong CW, Pearce DA, Convey P, Yew WC, Tan IKP (2012) Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma 181:45–55

    Google Scholar 

  • Chougule NP, Giri AP, Sainani MN, Gupta VS (2005) Gene expression patterns of Helicoverpa armigera gut proteases. Insect Biochem Mol Biol 35(4):355–367

    CAS  PubMed  Google Scholar 

  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23(6):321–329

    CAS  PubMed  Google Scholar 

  • da Mota FF, Gomes EA, Paiva E, Seldin L (2005) Assessment of the diversity of Paenibacillus species in environmental samples by a novel rpoB-based PCR-DGGE method. FEMS Microbiol Ecol 53(2):317–328

    PubMed  Google Scholar 

  • Dandekar AM, Gouran H, Ibanez AM, Uratsu SL, Aguero CB, McFarland S, Borhani Y, Feldstein PA, Bruening G, Nascimento R et al (2012) An engineered innate immune defense protects grapevines from Pierce disease. Proc Natl Acad Sci U S A 109(10):3721–3725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dar MA, Shaikh AA, Pawar KD, Pandit RS (2018) Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochem 73:142–153

    CAS  Google Scholar 

  • de Vries EJ, Breeuwer JAJ, Jacobs G, Mollema C (2001a) The association of western flower thrips, Frankliniellaoccidentalis, with a near Erwinia species gut bacteria: transient or permanent? J Invertebr Pathol 77(2):120–128

    PubMed  Google Scholar 

  • de Vries EJ, Jacobs G, Breeuwer JAJ (2001b) Growth and transmission of gut bacteria in the western flower thrips, Frankliniella occidentalis. J Invertebr Pathol 77(2):129–137

    PubMed  Google Scholar 

  • Demaneche S, David MM, Navarro E, Simonet P, Vogel TM (2009) Evaluation of functional gene enrichment in a soil metagenomic clone library. J Microbiol Methods 76(1):105–107

    CAS  PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280

    PubMed  PubMed Central  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol 49:71–92

    CAS  PubMed  Google Scholar 

  • Dillon RJ, Vennard CT, Charnley AK (2002) A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol 92:759–763

    CAS  PubMed  Google Scholar 

  • Dillon RJ, Webster G, Weightman AJ, Dillon VM, Blanford S, Charnley AK (2008) Composition of Acridid gut bacterial communities as revealed by 16S rRNA gene analysis. J Invertebr Pathol 97(3):265–272

    CAS  PubMed  Google Scholar 

  • Domingo JWS, Kaufman MG, Klug MJ, Tiedje JM (1998) Characterization of the cricket hindgut microbiota with fluorescently labeled rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64(2):752–755

    CAS  Google Scholar 

  • Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev 64(4):409–434

    CAS  PubMed  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    CAS  PubMed  Google Scholar 

  • Dowd PF, Shen SK (1990) The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomologia Experimentalis et Applicata 56:241–248

    CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    CAS  PubMed  Google Scholar 

  • Egert M, Stingl U, Bruun LD, Pommerenke B, Brune A, Friedrich MW (2005) Structure and topology of microbial communities in the major gut compartments of Melolonthamelolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol 71(8):4556–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 37:699–735

    CAS  PubMed  Google Scholar 

  • Esumi H, Takahashi Y, Sato S, Sugimura T (1982) Restriction fragment length polymorphism of the rat albumin gene in Sprague-Dawley rats and its application in genetic study of analbuminemia. Nucleic Acids Res 10(14):4247–4257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB (2012) Microbiology: animal behaviorand the microbiome. Science 338:198–199

    CAS  PubMed  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039

    CAS  PubMed  Google Scholar 

  • Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite. Appl Environ Microbiol 73(16):5199–5208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond Ser B Biol Sci 366(1569):1389–1400. https://doi.org/10.1098/rstb.2010.0226

    Article  Google Scholar 

  • Finn RN, Chauvigné F, Stavang JA, Belles X, Cerda J (2015) Insect glycerol transporters evolved by functional co-option and gene replacement. Nat Commun 6:7814

    CAS  PubMed  Google Scholar 

  • Frago E, Dicke M, Godfray HC (2012) Insect symbionts as hidden players in insect-plant interactions. Trends Ecol Evol 27:705–711

    PubMed  Google Scholar 

  • Fukatsu T, Watanable K, Sekiguchi Y (1998) Specific detection of intracellular symbiotic bacteria of aphids by oligonucleotide-probed in situ hybridization. Appl Entomol Zool 33(3):461–472

    Google Scholar 

  • Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, Jovanovich SB, Nelson JR, Schloss JA, Schwartz DC, Vezenov DV (2009) The challenges of sequencing by synthesis. Nat Biotechnol 27(11):1013–1023. https://doi.org/10.1038/nbt.1585

    Article  CAS  PubMed  Google Scholar 

  • Gauthier JP, Outreman Y, Mieuzet L, Simon JC (2015) Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PLoS ONE 10(3):e0120664. https://doi.org/10.1371/journal.pone.0120664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavriel S, Jurkevitch E, Gazit Y, Yuval B (2011) Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. J Appl Entomol 135:564–573

    Google Scholar 

  • Gill R, Latorre A, Moya A (2004) Bacterial endosymbionts of insects: insights fromcomparative genomics. Environ Microbiol 6(11):1109–1122

    Google Scholar 

  • Goodwin S, McPherson JD, McCombie R (2016) Coming of age: tenyears of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  • Gosh A, Mehta A, Khan AM (2018) Metagenomic analysis and its application. Encyclopedia Bioinform Comput Biol:1–9. https://doi.org/10.1016/B978-0-12-809633-8.20178-7

  • Green JL, Bohannan BJ, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043

    CAS  PubMed  Google Scholar 

  • Grieco MB, Lopes FAC, Oliveira LS (2019) Metagenomic analysis of the whole gut microbiota in Brazilian Termitidae termites Cornitermes cumulans, Cyrilliotermes strictinasus,Syntermes dirus, Nasutitermes jaraguae, Nasutitermes aquilinus,Grigiotermes bequaerti, and Orthognathotermes mirim. Curr Microbiol 76(6):687–697

    CAS  PubMed  Google Scholar 

  • Guan CH, Ju JJ, Borlee BR, Williamson LL, Shen B, Raffa KF, Handelsman J (2007) Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota. Appl Environ Microbiol 73(11):3669–3676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Nair S (2020) Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol 11:1357

    PubMed  PubMed Central  Google Scholar 

  • Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S (2014) Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J Biotechnol 176:42–49

    CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):45–49

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev MMBR 68(4):669–685. https://doi.org/10.1128/MMBR.68.4.669-685.2004

    Article  CAS  PubMed  Google Scholar 

  • Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496

    PubMed  Google Scholar 

  • Harada H, Ishikawa H (1993) Gut microbe of aphid closely-related to its intracellular symbiont. Biosystems 31(2-3):185–191

    CAS  PubMed  Google Scholar 

  • Harish ER, ManiChellappan K, Makeshkumar T, Mathew D, Ranjith MT, Girija D (2019) Next-generation sequencing reveals endosymbiont variability in cassava whitefly, Bemisia tabaci, across the agro-ecological zones of Kerala, India. Genome 62(9):571–584

    CAS  PubMed  Google Scholar 

  • Hayashi A, Aoyagi H, Yoshimura T, Tanaka H (2007) Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. J Biosci Bioeng 103(4):358–367

    CAS  PubMed  Google Scholar 

  • He S, Ivanova N, Kirton E, Allgaier M, Bergin C, Scheffrahn RH et al (2013) Comparative metagenomic and Metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-feeding higher termites. PLoS One 8(4):e61126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology:Adecade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    CAS  PubMed  Google Scholar 

  • Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P (2014) Library construction for nextgeneration sequencing: overviews and challenges. Biotech 56:61–64., n 66, 68, passim. https://doi.org/10.2144/000114133

    Article  CAS  Google Scholar 

  • Hilton SK, Castro-Nallar E, Perez-Losada M et al (2016) Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology. Front Microbiol 7:484. https://doi.org/10.3389/fmicb.2016.00484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch J, Strohmeier S, Pfannkuchen M, Reineke A (2012a) Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach. BMC Microbiol 12(Suppl 1):S6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch J, Strohmeier S, Pfannkuchen M et al (2012b) Assessment of bacterial endosymbiont diversity in Otiorhynchusspp. (Coleoptera: Curculionidae) larvae using a multitag 454 pyrosequencing approach. BMC Microbiol 12:S6. https://doi.org/10.1186/1471-2180-12-S1-S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins DW, Macnaughton SJ, O'Donnell AG (1991) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23(3):217–225

    Google Scholar 

  • Hosokawa T, Kikuchi Y, Meng XY, Fukatsu T (2005) The making of symbiont capsule in the plataspid stinkbug Megacoptan punctatissima. FEMS Microbiol Ecol 54(3):471–477

    CAS  PubMed  Google Scholar 

  • Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T (2007) Obligate symbiont involved in pest status of host insect. Proc Biol Sci 274(1621):1979–1984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst MRH, Jackson TA (2002) Use of the green fluorescent protein to monitor the fate of Serratia entomophila causing amber disease in the New Zealand grass grub, Costelytrazealandica. J Microbiol Methods 50(1):1–8

    CAS  PubMed  Google Scholar 

  • Husseneder C, Donaldson JR, Foil LD (2016) Genetically engineered yeast expressing a lytic peptide from bee venom (Melittin) kills symbiotic protozoa in the gut of Formosan subterranean termites. PLoS One 11(3):e0151675

    PubMed  PubMed Central  Google Scholar 

  • Indiragandhi P, Yoon C, Yang JO et al (2010) Microbial communities in the developmental stages of B and Q biotypes of sweetpotato whitefly, Bemisia tabaci (hemiptera: Aleyrodidae). J Korean Soc Appl Biol Chem 53:605–617. https://doi.org/10.3839/jksabc.2010.093

    Article  CAS  Google Scholar 

  • Inoue T, Moriya S, Ohkuma M, Kudo T (2005) Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Gene 349:67–75

    CAS  PubMed  Google Scholar 

  • Jaenicke S, Ander C, Bekel T (2011) Comparative and joint analysis of two metagenomic data sets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 6(1):e14519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffers LA, Roe RM (2008) The movement of proteins across the insect and tick digestive system. J Insect Physiol 54(2):319–332

    CAS  PubMed  Google Scholar 

  • Jing TZ, Qi FH, Wang ZY (2020) Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision? Microbiome 8:38

    PubMed  PubMed Central  Google Scholar 

  • Jones AG, Mason CJ, Felton GW, Hoover K (2019) Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 9:2792. https://doi.org/10.1038/s41598-019-39163-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefsen MH, Andersen SC, Christensen J, Hoorfar J (2015) Microbial food safety: potential of DNA extraction methods for use in diagnostic metagenomics. J Microbiol Methods 114:30–34. https://doi.org/10.1016/j.mimet.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  • Kane MD, Pierce NE (1994) Diversity within diversity: molecular approaches to studying microbial interactions withinsects. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds) Molecular methods in ecology and evolution. Birkhauser Verlag, Berlin, Germany, pp 509–524

    Google Scholar 

  • Kauppinen J, Mantyjarvi R, Katil ML (1999) Mycobacterium malmoense-specific nested PCR based on a conserved sequence detected in random amplified polymorphic DNA fingerprints. J Clin Microbiol 37(5):1454–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109:8618–8622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch H, Schmid-Hempel P (2012) Gut microbiota instead of host genotype drives the specificity in the interaction of a natural host-parasite system. Ecol Lett 15:1095–1103

    PubMed  Google Scholar 

  • Kodama R, Nakasuji Y (1971) Further studies on the pathogenic mechanism of bacterial diseases in gnotobiotic silkworm larvae. IFO Res Commun 5:1–9

    Google Scholar 

  • Kohler T, Stingl U, Meuser K, Brune A (2008) Novel lineages of Planctomycetes densely colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environ Microbiol 10(5):1260–1270

    PubMed  Google Scholar 

  • Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna VA, Rajendhran J, Gunasekaran P (2014) Insect gut microbiome: an unexploited reserve for biotechnological application. Asian Pacific J Trop Biomed 4(1):516–522

    Google Scholar 

  • Lance DR, McInnis DO, Rendon P, Jackson CG (2000) Courtship among sterile and wild Ceratitis capitata (Diptera: Tephritidae) in field cages in Hawaii and Guatemala. Ann Entomol Soc Am 93:1179–1185

    Google Scholar 

  • Langille MG, Zaneveld J, Caporaso JG (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DH, Zo YG, Kin SJ (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol 62(9):3112–3120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leung HC, Yiu SM, Yang B (2011) A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio. Bioinformatics 27(11):1489–1495

    CAS  PubMed  Google Scholar 

  • Li L, Frohlich J, Pfeiffer P, Konig H (2003) Termite gut symbiotic archaezoa are becoming living metabolic fossils. Eukaryot Cell 2(5):1091–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZT, Hopkins DL, Gray DJ (2015) Overexpression of antimicrobial lytic peptides protects grapevine from Pierce's disease under greenhouse but not field conditions. Transgenic Res 24(5):821–836

    CAS  PubMed  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1(4):331–345

    CAS  PubMed  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo R, Liu B, Xie Y (2012) SOAP denovo2: an empirically improved memory-efficient short-readdenovoassembler. Gigascience 1(1):18

    PubMed  PubMed Central  Google Scholar 

  • Malacrinò A, Rassati D, Schena L, Mehzabin R, Battisti A, Palmeri V (2017) Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecol 28:44–52. https://doi.org/10.1016/j.funeco.2017.04.007

    Article  Google Scholar 

  • Malathi VM, More RP, Anandham R, Gracy GR, Mohan M, Venketesan T, Samaddar S, Jalali SK, Tongmin (2018) Gut bacterial diversity of insecticide-susceptible and –resistant nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and elucidation of their putative functional roles. J Microbiol Biotechnol 28(6):976–986

    Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68(11):5367–5373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141

    CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marusina K (2006) The next generation of DNA sequencing. Genet Eng News 26:28–31

    Google Scholar 

  • Mayo B, Rachid CTCC, Alegría A, Leite AMO, Peixoto RS, Delgado S (2014) Impact of next generation sequencing techniques in food microbiology. Curr Genomics 15:293–309. https://doi.org/10.2174/1389202915666140616233211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKillip JL, Small CL, Brown JL, Brunner JF, Spence KD (1997) Sporogenous midgut bacteria of the leafroller, Pandemis pyrusana (Lepidoptera: Tortricidae). Environ Entomol 26(6):1475–1481

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies- the next generation. Nat Rev Genet 11:31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  • Meyer M, Kircher M (2010) Illumina sequencing library preparation forn highlymultiplexed target capture and sequencing. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot5448

  • Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8(2):258–272

    CAS  PubMed  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    CAS  PubMed  Google Scholar 

  • Morgan XC, Huttenhower C (2012) Human microbiome analysis. PLoS Comput Biol 8(12):e1002808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reactionamplified genes coding for 16s rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarajan N, Cook C, DiBonaventura M (2010) Finishing genomes with limited resources: lessons from an ensemble of microbial genomes. BMC Genomics 11(1):242

    PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32(7):777–784

    CAS  PubMed  Google Scholar 

  • Noda S, Ohkuma M, Usami R, Horikoshi K, Kudo T (1999) Culture-independent characterization of a gene responsible for nitrogen fixation in the symbiotic microbial community in the gut of the termite Neotermes koshunensis. Appl Environ Microbiol 65(11):4935–4942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes:A new versatile metagenomica ssembler. Genome Res 27(5):824–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma M, Kudo T (1996) Phylogenetic diversity of theintestinal bacterial community in the termite Reticulitermessperatus. Appl Environ Microbiol 62(2):461–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinform 12:385

    Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P (2015) Metagenomics:tools and insights for analysing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9(9):75

    PubMed  PubMed Central  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740

    CAS  PubMed  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9:1–55

    CAS  Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    CAS  PubMed  Google Scholar 

  • Pittman GW, Brumbley SM, Allsopp PG, O’Neill SL (2008) “Endomicrobia” and other bacteria associated with the hindgut of Dermolepida albohirtum larvae. Appl Environ Microbiol 74(3):762–767

    CAS  PubMed  Google Scholar 

  • Plummer E, Twin J, Bulach DM, Garland SM, Tabrizi SN (2015) A comparison of three bioinformatics pipelines for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data. J Proteomics Bioinformatics 8(12):283

    Google Scholar 

  • Poland TM, Rassati D (2018) Improved biosecurity surveillance of non-native forest insects: a review of current methods. J Pest Sci:1–13. https://doi.org/10.1007/s10340-018-1004-y

  • Priya NG, Ojha H, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variationin gut bacteria of Helicoverpa armigera. PLoS One 7:e30768

    PubMed  Google Scholar 

  • Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of IonTorrent, Pacific biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341. https://doi.org/10.1186/1471-2164-13-341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844. https://doi.org/10.1038/nbt.3935

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal R (2009) Beneficial interactions between insects and gut bacteria. Indian J Microbiol 49:114–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjith MT, Chellappan M, Harish ER, Girija D, Nazeem PA (2016) Bacterial communities associated with the gut of tomato fruit borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) based on Illumina next-generation sequencing. J Asia Pac Entomol 19(2):333–340

    Google Scholar 

  • Rassati D, Faccoli M, Petrucco Toffolo E, Battisti A, Marini L (2015) Improving the early detection of alien wood-boring beetles in ports and surrounding forests. J Appl Ecol 52:50–58. https://doi.org/10.1111/1365-2664.123

    Article  CAS  Google Scholar 

  • Rassati D, Faccoli M, Marini L, Haack RA, Battisti A, Petrucco Toffolo E (2018) Exploring the role of wood waste landfills in early detection of non-native wood-boring beetles. J Pest Sci 88:563–572. https://doi.org/10.1007/s10340-014-0639-6

    Article  Google Scholar 

  • Raymond B, Lijek RS, Griffiths RI, Bonsall MB (2008) Ecological consequences of ingestion of Bacilluscereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. J Invertebr Pathol 99(1):103–111

    CAS  PubMed  Google Scholar 

  • Reeson AF, Jankovic T, Kasper ML, Rogers S, Austin AD (2003) Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespulagermanica. Insect Mol Biol 12(1):85–91

    CAS  PubMed  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    CAS  Google Scholar 

  • Roe AD, Torson AS, Bilodeau G, Bilodeau P, Blackburn GS, Cui M, Cusson M, Doucet D, Griess VC, Lafond V et al (2018) Biosurveillance of forest insects: part I—integration and application of genomic tools to the surveillance of non-native forest insects. J Pest Sci:1–20. https://doi.org/10.1007/s10340-018-1027-4

  • Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18(1):47–60

    Google Scholar 

  • Rossmassler K, Dietrich C, Thompson C et al (2015) Metagenomic analysis of the microbiota in the highly compartmented hindguts of six wood- or soil-feeding higher termites. Microbiome 3:56. https://doi.org/10.1186/s40168-015-0118-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Roszak DB, Grimes DJ, Colwell RR (1984) Viable but nonrecoverable stage of salmonella enteritidis in aquatic systems. Can J Microbiol 30:334–338

    CAS  PubMed  Google Scholar 

  • Roussel EG, Bonavita MAC, Querellou J, Cragg BA, Webster G, Prieur D, Parkes RJ (2008) Extending the sub-sea-floor biosphere. Science 320(5879):1046–1046

    CAS  PubMed  Google Scholar 

  • Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, Oliver KM (2013) Uncovering symbiont-driven genetic diversity across north American pea aphids. Mol Ecol 22(7):2045–2059

    PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977a) DNAsequencing with chain- terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977b) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santo Domingo JW, Kaufman MG, Klug MJ, Holben WE, Harris D, Tiedje JM (1998) Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol 7(6):761–767

    Google Scholar 

  • Schierbeek A (1959) Measuring the invisible world: the life and works of Antoni van Leeuwenhoek. Abelard-Schuman, London. Available online at: https://www.questia.com/library/73684/measuring-the-invisible-world-thelife-and-works (Accessed Sep 12, 2020)

    Google Scholar 

  • Schmitt Wagner D, Friedrich MW, Wagner, B.& Brune, A. (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69(10):6007–6017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59(12):1212–1221

    CAS  PubMed  Google Scholar 

  • Scully ED, Geib SM, Hoover K, Tien M, Tringe SG et al (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8(9):e73827. https://doi.org/10.1371/journal.pone.0073827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SHJ, Malik AH, Zhang B, Bao Y, Qazi J (2020) Metagenomic analysis of relative abundance and diversity of bacterial microbiota in Bemisia tabaci infesting cotton crop in Pakistan. Infect Genet Evol 84:104381

    CAS  PubMed  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107:20051–20056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E (2011) Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes 2:190–192

    PubMed  Google Scholar 

  • Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209. https://doi.org/10.3389/fpls.2014.00209

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1997) Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J Biol Chem 272:28895–28900

    CAS  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generationDNAsequencing. Nat Biotechnol 26:1135–1145

    CAS  PubMed  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Biosci Biotechnol Biochem 69(6):1145–1155

    CAS  PubMed  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterialmicroflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915

    CAS  PubMed  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Nextgenerationsequencing technologies for environmental DNA research. Mol Ecol 21(8):1794–1805. https://doi.org/10.1111/j.1365-294X.2012.05538.x

    Article  CAS  PubMed  Google Scholar 

  • Sinclair L, Osman OA, Bertilsson S, Eiler A (2015) Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS One 10(2):e0116955

    PubMed  PubMed Central  Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp Biochem Physiol B: Comp Biochem 103(4):775–784

    Google Scholar 

  • Sleator RD, Shortall C, Hill C (2008) Under the microscope metagenomics. Lett Appl Microbiol 47:361–366

    CAS  PubMed  Google Scholar 

  • Smalla K (2004) Culture-independent microbiology. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 88–99

    Google Scholar 

  • Stahl DA, Lane GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224(4647):409–411

    CAS  PubMed  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    CAS  PubMed  Google Scholar 

  • Stangier KA (2009) Next-generation sequencing: a short comparison. LaboratoriumsMedizin-J Lab Med 33:153–157

    Google Scholar 

  • Steele HL, Streit WR (2005) Metagenomics: advances in ecology and biotechnology. FEMS Microbiol Lett 247(2):105–111

    CAS  PubMed  Google Scholar 

  • Stokes HW, Holmes AJ, Nield BS, Holley MP, Nevalaine KMH, Mabbutt BC, Gillings MR (2001) Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl Environ Microbiol 67(11):5240–5246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tikhe CV, Martin TM, Howells A, Delatte J, Husseneder C (2016) Assessment of genetically engineered Trabulsiella odontotermitis as a 'Trojan Horse' for paratransgenesis in termites. BMC Microbiol 16:202. https://doi.org/10.1186/s12866-016-0822-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todaka MS, Saita K, Hondo T, Kiuchi I, Takasu H, Ohkuma M, Piero C, Hayashizaki Y, Kudo T (2007) Environmental cDNA analysis of the genes involved in lignocellulose digestion in the symbiotic protist community of Reticulitermes speratus. FEMS Microbiol Ecol 59(3):592–599

    CAS  PubMed  Google Scholar 

  • Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3(3):336–339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tringe SG, VonMering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    CAS  PubMed  Google Scholar 

  • Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M (2008) Human gut microbiota and bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek 94(1):35–50

    PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428(6978):37–43

    CAS  PubMed  Google Scholar 

  • Van Djick EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426. https://doi.org/10.1016/j.tig.2014.07.001

    Article  CAS  Google Scholar 

  • Van Nieuwerburgh F, Thompson RC, Ledesma J, Deforce D, Gaasterland T, Ordoukhanian P, Head SR (2012) Illumina mate-paired DNA sequencing-library preparation using Cre-lox recombination. Nucleic Acids Res 40(3). https://doi.org/10.1093/nar/gkr1000

  • Vasanthakumar A, Delalibera I, Handelsman J, Klepzig KD, Schloss PD, Raffa KF (2006) Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environ Entomol 35(6):1710–1717

    Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004a) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al (2004b) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    CAS  PubMed  Google Scholar 

  • Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2008) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33(1):236–255

    PubMed  Google Scholar 

  • Wang H, Lei T, Xia W et al (2019) Insight into the microbial world of Bemisia tabaci cryptic species complex and its relationships with its host. Sci Rep 9:6568. https://doi.org/10.1038/s41598-019-42793-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnecke F, Luginbuhl P, Ivanova N et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450(7169):560–565

    CAS  PubMed  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genetics 3(11):850–861

    CAS  PubMed  Google Scholar 

  • Williamson LL, Borlee BR, Schloss PD, Guan CH, Allen HK, Handelsman J (2005) Intracellular screen to identify metagenomic clones that induce or inhibit a quorumsensing biosensor. Appl Environ Microbiol 71(10):6335–6344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstock GM (2012) Genomic approaches to study human microbiota. Nature 489:250–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74(11):5088–5090. https://doi.org/10.1073/pnas.74.11.5088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL et al (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4(6):e188

    PubMed  PubMed Central  Google Scholar 

  • Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L et al (2013) DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS ONE 8(7): e68852. https://doi.org/10.1371/journal.pone.0068852

  • Xia X, Gurr GM, Vasseur L et al (2017) Metagenomic sequencing of diamondback moth gut microbiome unveils key Holobiont adaptations for herbivory. Front Microbiol 8:663. https://doi.org/10.3389/fmicb.2017.00663

    Article  PubMed  PubMed Central  Google Scholar 

  • Yandell DW (1991) SSCP (single strand conformation polymorphism) analysis of PCR fragments. Jpn J Cancer Res 82:1468–1469

    CAS  PubMed  Google Scholar 

  • Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CN (2008) Plant systems biology comes of age. Trends Plant Sci 13(4):165–171

    CAS  PubMed  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XG, Smith JA, Oi FM, Koehler PG, Bennett GW, Scharf ME (2007) Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene 395(1-2):29–39

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Chellappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chellappan, M., Ranjith, M.T. (2021). Metagenomic Approaches for Insect Symbionts. In: Omkar (eds) Microbial Approaches for Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3595-3_6

Download citation

Publish with us

Policies and ethics