Skip to main content
  • 476 Accesses

Abstract

Plants possess primary and secondary metabolites. Primary metabolites are required to maintain their basic physiological processes, which also serve as essential sources of nutrients for herbivores, whereas secondary metabolites help to protect plants from herbivore damage. Phyto-antifeedants, a type of secondary metabolite, are recorded from 43 families of plants, but stress has been given in 4 families—Meliaceae, Asteraceae, Labiatae and Leguminosae. Terpenes are classified depending on isoprene units. Terpenes are divided into monoterpenes, sesquiterpenes, diterpenes and triterpenes, and many compounds among these groups act as antifeedants. Flavonoids, alkaloids, steroids and coumarins from plant sources could also act as antifeedants. The lepidopteran larvae possess chemosensilla on the maxillary palp, and the test cells in the sensillum act as deterrent. Some insects possess P450 detoxification enzymes in the midgut to detoxify the antifeedants. One of the most commonly used antifeedant is azadirachtin A from Azadirachta indica, which is applied against ca. 400 insect species belonging to Blattodea, Coleoptera, Diptera, Dermaptera, Ensifera, Homoptera, Heteroptera, Hymenoptera, Lepidoptera, Isoptera, Phasmida, Thysanoptera and Siphonaptera. One of the best strategies to apply an antifeedant is in water- or oil-based formulations. Latex may also be used to apply antifeedants. At present 1000 antifeedants have been isolated from plants in laboratory conditions, but the efficacies of antifeedants in the field are low due to either habituation of insects towards antifeedants or variations in responses among different insects. The major hindrance in developing phyto-antifeedants is that they are not broad spectrum or they may not be effective in field conditions. Therefore, basic research in combination with field trials of the isolated phyto-antifeedants at different doses are necessary to get ecofriendly safe products for insect pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaszadeh G, Srivastava C, Walia S (2014) Insecticidal and antifeedant activities of clerodane diterpenoids isolated from the Indian bhant tree, Clerodendron infortunatum, against the cotton bollworm, Helicoverpa armigera. J Insect Sci 14(1):29. https://doi.org/10.1093/jis/14.1.29

    Article  PubMed  PubMed Central  Google Scholar 

  • Abe M, Matsuda K (2000) Feeding deterrents from Momordica charantia leaves to cucurbitaceous feeding beetle species. Appl Entomol Zool 35(1):143–149

    Google Scholar 

  • Adekenov SM, Mukhametzhanova GM, Atazhanova GA, Harmatha J (2015) Insect repellent and feeding deterrent activity of natural sesquiterpene lactones and their derivatives. Czech Chem Soc Symp Ser 13(3–4):163–234

    Google Scholar 

  • Adeyemi MM, Adebote DA, Amupitan JO, Oyewale AO, Agbaji AS (2010) Antifeedant activity of quercetin isolated from the stem bark of Bobgunnia madagascariensis (Desv.) J.H. Kirkbr & Wiersema. (Caesalpiniaceae). Aust J Basic Appl Sci 4(8):3342–3346

    CAS  Google Scholar 

  • Akhtar Y, Isman MB (2004) Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J Appl Entomol 128(1):32–38

    CAS  Google Scholar 

  • Alford RA, Bentley MD (1986) Citrus limonoids as potential antifeedants for the spruce budworm (Lepidoptera: Tortricidae). J Econ Entomol 79(1):35–38

    CAS  Google Scholar 

  • Alford RA, Cullen JA, Storch RH, Bentley MD (1987) Antifeedant activity of limonin against the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 80(3):575–578

    CAS  Google Scholar 

  • Anderson ØM, Markham KR (2006) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, p 1237

    Google Scholar 

  • Anderson JC, Blaney WM, Cole MD, Fellows LL, Ley SV, Sheppard RN, Simmonds MSJ (1989) The structure of two new clerodane diterpenoid potent insect antifeedants from Scutellaria woronowii (Juz); Jodrellin A & B. Tetrahedron Lett 30(35):4737–4740

    CAS  Google Scholar 

  • Andrés MF, Rossa GE, Cassel E, Vargas RMF, Santana O, Díaz CE, González-Coloma A (2017) Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food Chem Toxicol 109(Pt 2):1086–1092

    PubMed  Google Scholar 

  • Ansante TF, Ribeiro LP, Bicalho KU, Fernandes JB, Silva MFGF, Vieira PC, Vendramim JD (2015) Secondary metabolites from Neotropical Annonaceae: screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Ind Crops Prod 74:969–976

    CAS  Google Scholar 

  • Argandoña VH, Faini FA (1993) Oleanolic acid content in Baccharis linearis and its effects on Heliothis zea larvae. Phytochemistry 33(6):1377–1379

    Google Scholar 

  • Asakawa Y, Yoyota M, Takemoto T, Kubo I, Nakanishi K (1980) Insect antifeedant secoaromadendrane-type sesquiterpenes from Plagiochila species. Phytochemistry 19(10):2147–2154

    CAS  Google Scholar 

  • Ascher KRS, Nemny NE, Eliyahu M, Kirson I, Abraham A, Glotter E (1980) Insect antifeedant properties of withanolides and related steroids from Solanaceae. Experientia 36(8):998–999

    CAS  Google Scholar 

  • Bai L, Liu Q, Cen Y, Huang J, Zhang X, Guo S, Zhang L, Guo T, Ho C-T, Bai N (2018) A new sesquiterpene lactone glucoside and other constituents from Inula salsoloides with insecticidal activities on striped flea beetle (Phyllotreta striolata Fabricius). Nat Prod Res 32(5):552–557

    CAS  PubMed  Google Scholar 

  • Baskar K, Ignacimuthu S (2012) Bioefficacy of violacein against Asian armyworm Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Saudi Soc Agric Sci 11(1):73–77

    CAS  Google Scholar 

  • Belles X, Camps F, Coll J, Piulachs MD (1985) Insect antifeedant activity of clerodane diterpenoids against larvae of Spodoptera littoralis (Boisd.) (Lepidoptera). J Chem Ecol 11(10):1439–1445

    CAS  PubMed  Google Scholar 

  • Bennison J, Maulden K, Maher H (2002) Choice of predatory mites for biological control of ground-dwelling stages of western flower thrips within a ‘push-pull’ strategy on pot chrysanthemum. IOBC/WPRS Bull 25(1):9–12

    Google Scholar 

  • Bentley MD, Leonard DE, Stoddard WF, Zalkow LH (1984) Pyrrolizidine alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Totricidae). Ann Entomol Soc Am 77(4):393–397

    CAS  Google Scholar 

  • Berdegue M, White KK, Trumble JT (1997) Feeding deterrence of Spodoptera exigua (Lepidoptera: Noctuidae) larvae by low concentrations of linear furanocoumarins. Environ Entomol 26(4):912–919

    Google Scholar 

  • Bernays EA, Chapman RF (eds) (1994) Host-plant selection by phytophagous insects. Chapman & Hall, New York, p 312

    Google Scholar 

  • Bernays E, De Luca C (1981) Insect antifeedant properties of an iridoid glycoside: ipolamiide. Experientia 37(12):1289–1290

    CAS  Google Scholar 

  • Blaney WM, Simmonds MSJ (1990) A behavioural and electrophysiological study of the role of tarsal chemoreceptors in feeding by adults of Spodoptera, Heliothis virescens and Helicoverpa armigera. J Insect Physiol 36(10):743–756

    CAS  Google Scholar 

  • Bomford MK, Isman MB (1996) Desensitization of fifth instar Spodoptera litura to azadirachtin and neem. Entomol Exp Appl 81(3):307–313

    CAS  Google Scholar 

  • Bondì ML, Al-Hillo MRY, Lamara K, Ladjel S, Bruno M, Piozzi F, Simmonds MSJ (2000) Occurrence of the antifeedant 14,15-dihydroajugapitin in the aerial parts of Ajuga iva from Algeria. Biochem Syst Ecol 28(10):1023–1025

    PubMed  Google Scholar 

  • Bozov PI, Georgieva YP (2017) Antifeedant activity of neo-clerodane diterpenoids from Scutellaria altissima against Colorado potato beetle larvae. Nat Prod Commun 12(3):327–328

    PubMed  Google Scholar 

  • Bremner PD, Simmonds MSJ, Blaney WM, Veitch NC (1998) Neo-clerodane diterpenoid insect antifeedants from Ajuga reptans cv catlins giant. Phytochemistry 47(7):1227–1232

    CAS  Google Scholar 

  • Bruno M, Ciriminna R, Piozzi F, Rosselli S, Simmonds MSJ (1999) Antifeedant activity of neo-clerodane diterpenoids from Teucrium fruticans and derivatives of fruticolone. Phytochemistry 52(6):1055–1058

    CAS  Google Scholar 

  • Bruno M, Piozzi F, Maggio AM, Rosselli S, Simmonds MSJ, Servettaz O (2002) Antifeedant activity of neo-clerodane diterpenoids from Teucrium arduini. Biochem Syst Ecol 30(6):595–599

    CAS  Google Scholar 

  • Butterworth JH, Morgan ED (1968) Isolation of a substance that suppresses feeding in locusts. Chem Commun 1968(1):23–24

    Google Scholar 

  • Cabral MMO, Garcia ES, Kelecom A (1995) Lignanes from the Brazilian Melia azedarach, and their activity in Rhodnius prolixus (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz 90(6):759–763

    CAS  PubMed  Google Scholar 

  • Caprioli V, Cimino G, Colle R, Gavagnin M, Sodano G, Spinella A (1987) Insect antifeedant activity and hot taste for humans of selected natural and synthetic 1,4-dialdehydes. J Nat Prod 50(2):146–151

    CAS  PubMed  Google Scholar 

  • Cárdenas PD, Almeida A, Bak S (2019) Evolution of structural diversity of triterpenoids. Front Plant Sci 10:1523. https://doi.org/10.3389/fpls.2019.01523

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpinella MC, Ferrayoli C, Valladares G, Defago M, Palacios S (2002) Potent limonoid insect antifeedant from Melia azedarach. Biosci Biotechnol Biochem 66(8):1731–1736

    CAS  PubMed  Google Scholar 

  • Carpinella MC, Defago MT, Valladares G, Palacios SM (2003) Antifeedant and insecticide properties of a limonoid from Melia azedarach (Meliaceae) with potential use for pest management. J Agric Food Chem 51(2):369–374

    CAS  PubMed  Google Scholar 

  • Champagne DE, Isman MB, Towers GHN (1989) Insecticidal activity of phytochemicals and extracts of the Meliaceae. In: Aranson JT, Philogene BJR, Morand P (eds) Insecticides of plant origin, American Chemical Society symposium series, vol 387. American Chemical Society, Washington, DC, pp 95–109

    Google Scholar 

  • Chandramu C, Manohar RD, Krupadanam DGL, Dashavantha RV (2003) Isolation, characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. Phytother Res 17(2):129–134

    CAS  PubMed  Google Scholar 

  • Chandravadana MV (1987) Identification of triterpenoid feeding deterrent of red pumpkin beetles (Aulacophora foveicollis) from Momordica charantia. J Chem Ecol 13(7):1689–1694

    CAS  PubMed  Google Scholar 

  • Chang CC, Nakanishi K (1983) Specionin, an iridoid insect antifeedant from Catalpa speciosa. J Chem Soc Chem Commun 1983(11):605–606

    Google Scholar 

  • Chen W, Isman MB, Chiu SF (1995) Antifeedant and growth inhibitory effects of the limonoid toosendanin and Melia toosendan extracts on the variegated cutworm, Peridroma saucia (Lep., Noctuidae). J Appl Entomol 119(1–5):367–370

    Google Scholar 

  • Chen L, Shan L, Zhang J, Xu W, Wu M, Huang S, Zhou X (2015) Diterpenoid alkaloids from Aconitum soongaricum var. pubescens. Nat Prod Commun 10(12):2063–2065

    PubMed  Google Scholar 

  • Chiu SF (1989) Recent advances in research on botanical insecticides in China. In: Aranson JT, Philogene BJR, Morand P (eds) Insecticides of plant origin, American Chemical Society symposium series, vol 387. American Chemical Society, Washington, DC, pp 69–77

    Google Scholar 

  • Cifuente DA, Borkowski EJ, Sosa ME, Gianello JC, Giordano OS, Tonn CE (2002) Clerodane diterpenes from Baccharis sagittalis: insect antifeedant activity. Phytochemistry 61(8):899–905

    CAS  PubMed  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52(1):375–400

    CAS  PubMed  Google Scholar 

  • Cornelius WW, Akenga T, Obiero GO, Lutta KP (2009) Antifeedant activities of the erythrinaline alkaloids from Erythrina latissima against Spodoptera littoralis (Lepidoptera noctuidae). Rec Nat Prod 3(2):96–103

    CAS  Google Scholar 

  • Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4(12):1182–1186

    CAS  PubMed  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17(12):4022–4034

    CAS  PubMed  Google Scholar 

  • Dethier VG (1982) Mechanism of host-plant recognition. Entomol Exp Appl 31(1):49–56

    Google Scholar 

  • Dethier VG, Browne BL, Smith CN (1960) The designation of chemicals in terms of the responses they elicit from insects. J Econ Entomol 53(1):134–136

    CAS  Google Scholar 

  • El Asbahani A, Miladi K, Badri W, Sala M, Aït Addi EH, Casabianca H, El Mousadik A, Hartmann D, Jilale A, Renaud FNR, Elaissari A (2015) Essential oils: from extraction to encapsulation. Int J Pharm 483(1–2):220–243

    CAS  PubMed  Google Scholar 

  • Emam AM, Swelam ES, Megally NY (2009) Furocoumarin and quinolone alkaloid with larvicidal and antifeedant activities isolated from Ruta chalepensis leaves. J Nat Prod 2:10–22

    CAS  Google Scholar 

  • Erler F, Tunc I (2005) Monoterpenoids as fumigants against greenhouse pests: toxic, development and reproduction-inhibiting effects. J Plant Dis Protect 112(2):181–192

    Google Scholar 

  • Fagoonee I, Lange G (1981) Noxious effects of neem extracts on Crocidolomia binotalis. Phytoparasitica 9(2):111–118

    CAS  Google Scholar 

  • Fang X, Di YT, Hao XJ (2011) The advances in the limonoid chemistry of the Meliaceae family. Curr Org Chem 15(9):1363–1391

    CAS  Google Scholar 

  • Fraga BM, Gonzalez-Coloma A, Gutierrez C, Terrero D (1997) Insect antifeedant isoryanodane diterpenes from Persea indica. J Nat Prod 60(9):880–883

    CAS  Google Scholar 

  • Ganjian I, Kubo I, Fludzinski P (1983) Insect antifeedant elemanolide lactones from Vernonia amygdalina. Phytochemistry 22(11):2525–2526

    CAS  Google Scholar 

  • Gao G, Lu Z, Tao S, Zhang S, Wang F (2011) Triterpenoid saponins with antifeedant activities from stem bark of Catunaregam spinosa (Rubiaceae) against Plutella xylostella (Plutellidae). Carbohydr Res 346(14):2200–2205

    CAS  PubMed  Google Scholar 

  • Gillette NE, Kegley SJ, Costello SL, Mori SR, Webster JN, Mehmel CJ, Wood DL (2014) Efficacy of verbenone and green leaf volatiles for protecting whitebark and limber pines from attack by mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). Environ Entomol 43(4):1019–1026

    PubMed  Google Scholar 

  • Glendinning JI (1996) Is chemosensory input essential for the rapid rejection of toxic foods? J Exp Biol 199(7):1523–1534

    CAS  PubMed  Google Scholar 

  • Glendinning JI, Hills TT (1997) Electrophysiological evidence for two transduction pathways within a bitter-sensitive taste receptor. J Neurophysiol 78(2):734–745

    CAS  PubMed  Google Scholar 

  • Glendinning JI, Slansky F (1995) Consumption of a toxic food by caterpillars increases with dietary exposure: support for a role of induced detoxification enzymes. J Comp Physiol A 176(3):337–345

    CAS  Google Scholar 

  • Glendinning JI, Nelson NM, Bernays EA (2000) How do inositol and glucose modulate feeding in Manduca sexta caterpillars? J Exp Biol 203(8):1299–1315

    CAS  PubMed  Google Scholar 

  • Goławska S, Łukasik I (2012) Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. J Pest Sci 85(4):443–450

    Google Scholar 

  • González-Coloma A, Reina M, Cabrera R, Castanera P, Gutierrez C (1995) Antifeedant and toxic effects of sesquiterpenes from Senecio palmensis to Colorado potato beetle. J Chem Ecol 21(9):1255–1270

    PubMed  Google Scholar 

  • González-Coloma A, Terrero D, Perales A, Escoubas P, Fraga BM (1996) Insect antifeedant ryanodane diterpenes from Persea indica. J Agric Food Chem 44(1):296–300

    Google Scholar 

  • González-Coloma A, Gutierrez C, Cabrera R, Reina M (1997) Silphinene derivatives: their effects and modes of action on Colorado potato beetle. J Agric Food Chem 45(3):946–950

    Google Scholar 

  • González-Coloma A, Guadaño A, Gutiérrez C, Cabrera R, de la Peña E, de la Fuente G, Reina M (1998) Antifeedant Delphinium diterpenoid alkaloids. Structure-activity relationships. J Agric Food Chem 46(1):286–290

    PubMed  Google Scholar 

  • González-Coloma A, Valencia F, Martín N, Hoffmann JJ, Hutter L, Marco JA, Reina M (2002) Silphinene sesquiterpenes as model insect antifeedants. J Chem Ecol 28(1):117–129

    PubMed  Google Scholar 

  • González-Coloma A, Reina M, Medinaveitia A, Guadano A, Santana O, Martinez-Diaz R, Ruiz-Mesia L, Alva A, Grandez M, Diaz R, Gavin JA, de la Fuente G (2004) Structural diversity and defensive properties of norditerpenoid alkaloids. J Chem Ecol 30(7):1393–1408

    PubMed  Google Scholar 

  • Govindachari TR, Narasimhan NS, Suresh G, Partho PD, Gopalakrishnan G (1996) Insect antifeedant and growth-regulating activities of salannin and other c-seco limonoids from neem oil in relation to azadirachtin. J Chem Ecol 22(8):1453–1461

    CAS  PubMed  Google Scholar 

  • Govindachari TR, Suresh G, Gopalakrishan G, Wesley SD, Singh NDP (1999) Antifeedant activity of some diterpenoids. Fitoterapia 70(3):269–274

    CAS  Google Scholar 

  • Griffiths DC, Maniar SP, Merritt LA, Mudd A, Pickett JA, Pye BJ, Smart LE, Wadhams LJ (1991) Laboratory evaluation of pest management strategies combining antifeedants with insect growth regulator insecticides. Crop Prot 10(2):145–151

    CAS  Google Scholar 

  • Gunaherath GMKB, Gunatilaka AAL (2014) Plant steroids: occurrence, biological significance and their analysis. In: Encyclopedia of analytical chemistry. Wiley, Hoboken, NJ, pp 1–26. https://doi.org/10.1002/9780470027318.a9931

    Chapter  Google Scholar 

  • Guo H, Yang M, Qi Q (2014) Insecticidal and antifeedant effects of two alkaloids from Cynanchum komarovii against larvae of Plutella xylostella L. J Appl Entomol 138(1–2):133–140

    CAS  Google Scholar 

  • Gutiérrez C, Fereres A, Reina M, Cabrera R, González-Coloma A (1997) Behavioral and sublethal effects of structurally related lower terpenes on Myzus persicae. J Chem Ecol 23(6):1641–1650

    Google Scholar 

  • Hamberger B, Bak S (2013) Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos Trans R Soc B Biol Sci 368(1612):20120426

    Google Scholar 

  • Hanson JR, Rivett DEA, Ley SV, Williams DJ (1982) The X-ray structure and absolute configuration of insect antifeedant clerodane diterpenoids from Teucrium africanum. J Chem Soc Perkin Trans 1(1982):1005–1008

    Google Scholar 

  • Hasan F, Ansari MS (2011) Toxic effects of neem-based insecticides on Pieris brassicae (Linn.). Crop Prot 30(4):502–507

    CAS  Google Scholar 

  • Hassanali A, Bentley MD, Sitayo ENO, Njoroge PEW, Yatagai M (1986) Studies on limonoid insect antifeedants. Insect Sci Appl 7(4):495–499

    CAS  Google Scholar 

  • Hollister B, Dickens JC, Perez F, Deahl KL (2001) Differential neurosensory responses of adult Colorado potato beetle, Leptinotarsa decemlineata, to glycoalkaloids. J Chem Ecol 27(6):1105–1118

    CAS  PubMed  Google Scholar 

  • Hosozawa S, Kato N, Munakata K (1973) Diterpenoids from Caryopteris divaricata. Phytochemistry 12(7):1833–1834. (Errata: 1974, 13, 318)

    CAS  Google Scholar 

  • Hosozawa S, Kato N, Munakata K (1974) Antifeeding active substances for insect in Caryopteris divaricata Maxim. Agric Biol Chem 38(4):823–826

    CAS  Google Scholar 

  • Hu X, Yan S-C, Lu Y-F, Liu T (2011) Antifeedant activity of the secondary metabolic compounds of yew against Lymantria dispar L. larvae. J Beijing For Univ 33(5):151–154

    Google Scholar 

  • Huang RC, Okamura H, Imagawa T, Tadera K, Nakatani M (1995) Azedarachin C, a limonoid antifeedant from Melia azedarach. Phytochemistry 38(3):593–594

    CAS  Google Scholar 

  • Hummelbrunner LA, Isman MB (2001) Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). J Agric Food Chem 49(2):715–720

    CAS  PubMed  Google Scholar 

  • Ishimoto H, Matsumoto A, Tanimura T (2000) Molecular identification of a taste receptor gene for trehalose in Drosophila. Science 289(5476):116–119

    CAS  PubMed  Google Scholar 

  • Isman MB (1993) Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. Pestic Sci 38(1):57–63

    CAS  Google Scholar 

  • Isman MB (1994) Botanical insecticides and antifeedants: new sources and perspectives. Pestic Res J 6(1):11–19

    Google Scholar 

  • Isman M (2002) Insect antifeedants. Pestic Outlook 13(4):152–157

    CAS  Google Scholar 

  • Isman MB, Brard NL, Nawrot J, Harmatha J (1989) Antifeedant and growth inhibitory effects of bakkenolide-A and other sesquiterpene lactones on the variegated cutworm, Peridroma saucia Hübner (Lep., Noctuidae). J Appl Entomol 107(1–5):524–529

    Google Scholar 

  • Jagadeesh SG, Krupadanam GLD, Srimannarayana G, Murthy SS, Kaur A, Raja SS (1998) Tobacco caterpillar antifeedent from the gotti stem wood triterpene betulinic acid. J Agric Food Chem 46(7):2797–2799

    Google Scholar 

  • Jermy T, Butt BA, McDonough L, Dreyer DL, Rose AF (1981) Antifeedants for the Colorado potato beetle. I. Antifeeding constituents of some plants from the sagebrush community. Insect Sci Appl 1(3):237–242

    CAS  Google Scholar 

  • Kanda D, Kaur S, Koul O (2017) A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: acute toxins or feeding deterrents. J Pest Sci 90(2):531–545

    Google Scholar 

  • Kashiwagi T, Wu B, Iyota K, Chen XH, Tebayashi SI, Kim CS (2007) Antifeedants against Locusta migratoria from the Japanese cedar, Cryptomeria japonica. Biosci Biotechnol Biochem 71(4):966–970

    CAS  PubMed  Google Scholar 

  • Khorram MS, Nasabi NT, Jafarnia S, Khosroshahi S (2011) The toxicity of selected monoterpene hydrocarbons as single compounds and mixtures against different developmental stages of colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J Entomol 8(5):404–416

    CAS  Google Scholar 

  • Kim SI, Yoon JS, Jung JW, Hong KB, Ahn YJ, Kwon HW (2010) Toxicity and repellency of origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J Asia Pac Entomol 13(4):369–373

    CAS  Google Scholar 

  • Kiran SR, Reddy AS, Devi PS, Reddy KJ (2006) Insecticidal, antifeedant and oviposition deterrent effects of the essential oil and individual compounds from leaves of Chloroxylon swietenia DC. Pest Manag Sci 62(11):1116–1121

    CAS  PubMed  Google Scholar 

  • Klepzig KD, Schlyter F (1999) Laboratory evaluation of plant-derived antifeedants against the pine weevil Hylobius abietis (Coleoptera: Curculionidae). J Econ Entomol 92(3):644–650

    CAS  Google Scholar 

  • Klocke JA, Kubo I (1982) Citrus limonoid by-products as insect control agents. Entomol Exp Appl 32(3):299–301

    CAS  Google Scholar 

  • Klocke JA, Hu MY, Chiu SF, Kubo I (1991) Grayanoid diterpene insect antifeedants and insecticides from Rhododendron molle. Phytochemistry 30(6):1797–1800

    CAS  Google Scholar 

  • Koul O (1999) Insect growth regulating and antifeedant effects of neem extracts and azadirachtin on two aphid species of ornamental plants. J Biosci 24(1):85–90

    CAS  Google Scholar 

  • Koul O (2005) Insect antifeedants. CRC Press LLC, Boca Raton, FL, p 1006

    Google Scholar 

  • Koul O (2008) Phytochemicals and insect control: an antifeedant approach. Crit Rev Plant Sci 27(1):1–24

    CAS  Google Scholar 

  • Koul O, Isman MB (1992) Toxicity of the limonoid allelochemical cedrelone to noctuid larvae. Entomol Exp Appl 64(3):281–287

    CAS  Google Scholar 

  • Koul O, Wahab S (2004) Neem: today and in the new millennium. Kluwer Academic, New York, p 276

    Google Scholar 

  • Koul O, Multani JS, Singh G, Wahab S (2002) Bioefficacy of toosendanin from Melia dubia (syn. M. azedarach) against gram pod-borer, Helicoverpa armigera (Hübner). Curr Sci 83(11):1387–1391

    CAS  Google Scholar 

  • Koul O, Singh G, Singh R, Multani JS (2005) Bioefficacy and mode-of-action of aglaroxin A from Aglaia elaeagnoidea (syn. A. roxburghiana) against Helicoverpa armigera and Spodoptera litura. Entomol Exp Appl 114(3):197–204

    CAS  Google Scholar 

  • Kraus W, Grimminger W, Sawitzki G (1978) Toonacilin and 6-acetoxytoonacilin, two novel B-seco-tetranortriterpenoids with antifeeding activity. Angew Chem 17(6):452–453

    Google Scholar 

  • Kraus W, Cramer R, Bokel M, Sawitzti G (1981) New insect antifeedants from Azadirachta indica and Melia azedarach. In: Schmunerer H, Ascher KRS, Rembold H (eds) Proceedings of the 1st international neem conference. FRG, GTZ, Eschborn, pp 507–518

    Google Scholar 

  • Kraus W, Baumann S, Bokel M, Keller U, Klenk A, Klingele M, Pohnl H, Schwinger M (1987) Control of insect feeding and development by constituents of Melia uzedarach and Azadirachta indica. In: Schmutterer H, Ascher KRS (eds) Natural pesticides from the neem tree and other tropical plants. Proceedings, 3rd international neem conference, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn, pp 111–125 

    Google Scholar 

  • Kreckova J, Krecek J, Harmatha J (1988) Feeding deterrent activity of certain plant substances against subterranean termite Coptotermes fornosanus (Rhinotermitidae; Isoptera). In: Senhal F, Zabza A, Denlinger DL (eds) Endocrinological frontiers in physiological insect ecology. Wroclaw Technical University Press, Wroclaw, pp 105–107

    Google Scholar 

  • Kubo I, Ganjian I (1981) Insect antifeedant terpenes, hot-tasting to humans. Experientia 37(10):1063–1064

    CAS  PubMed  Google Scholar 

  • Kubo I, Nakanishi K (1977) Insect antifeedants and repellents from African plants. In: Hedin PA (ed) Host plant resistance to pests. American Chemical Society, Washington, DC, pp 165–178

    Google Scholar 

  • Kubo I, Lee YW, Petteri M, Pilkiewicz F, Nakanishi K (1976) Potent armyworm antifeedants from the East African Warburgia plants. J Chem Soc Chem Commun 24:1013–1014

    Google Scholar 

  • Kubo I, Jamalamadaka V, Kamikawa T, Takahashi K, Tabata K, Kusumi T (1996) Absolute stereochemistry of tanabalin, an insect antifeedant clerodane from Tanacetum balsamita. Chem Lett 25(6):441–442

    Google Scholar 

  • Kumbasli M, Bauce É (2013) Spruce budworm biological and nutritional performance responses to varying levels of monoterpenes. iForest 6(6):310–314

    Google Scholar 

  • Lajide L, Escoubas P, Mizutani J (1995) Termite antifeedant activity in Detarium microcarpum. Phytochemistry 40(4):1101–1104

    CAS  Google Scholar 

  • Li XD, Chen WK, Hu MY (1995) Studies on the effects and mechanism of azadirachtin and rhodojaponin-III on Spodoptera litura (F.). J South China Agric Univ 16(2):80–85

    Google Scholar 

  • Liang GM, Chen W, Liu TX (2003) Effects of three neem-based insecticides on diamondback moth (Lepidoptera: Plutellidae). Crop Prot 22(2):333–340

    CAS  Google Scholar 

  • Lindgren BS, Nordlander G, Birgersson G (1996) Feeding deterrence of verbenone to the pine weevil, Hylobius abietis. J Appl Entomol 120(1–5):397–403

    Google Scholar 

  • Liu C, Tian J, An T, Lyu F, Jia P, Zhou M, Liu Z, Feng Y (2020) Secondary metabolites from Solanum rostratum and their antifeedant defense mechanisms against Helicoverpa armigera. J Agric Food Chem 68(1):88–96

    CAS  PubMed  Google Scholar 

  • Lwande W, Hassanali A, Njoroge PW, Bentley MD, Monache FD, Jondiko JI (1985) A new 6a-hydroxypterocarpan with insect antifeedant and antifungal properties from the roots of Tephrosia hildebrandtii Vatke. Insect Sci Appl 6(4):537–541

    CAS  Google Scholar 

  • Ma WC (1977) Alteration of chemoreceptor function in armyworm larvae (Spodoptera exempta) by a plant-derived sesquiterpenoid and sulfhydral reagent. Physiol Entomol 2(3):199–207

    CAS  Google Scholar 

  • Mabry TJ, Gill JE, Burnett WC, Jones SB (1977) Antifeedant sesquiterpene lactones in the Compositae. In: Hedin PA (ed) Host plant resistance to pests, vol 62. American Chemical Society, Washington, DC, pp 179–184

    Google Scholar 

  • Mao L, Henderson G (2007) Antifeedant activity and acute and residual toxicity of alkaloids from Sophora flavescens (Leguminosae) against formosan subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 100(3):866–870

    CAS  PubMed  Google Scholar 

  • Mareggiani G, Picollo MI, Zerba E, Burton G, Tettamanzi MC, Benedetti-Doctorovich MOV, Veleiro AS (2000) Antifeedant activity of withanolides from Salpichroa origanifolia on Musca domestica. J Nat Prod 63(8):1113–1116

    CAS  PubMed  Google Scholar 

  • Martel JW, Alford AR, Dickens JC (2005) Laboratory and greenhouse evaluation of a synthetic host volatile attractant for Colorado potato beetle, Leptinotarsa decemlineata (Say). Agric For Entomol 7(1):71–78

    Google Scholar 

  • Mason PA, Singer MS (2015) Defensive mixology: combining acquired chemicals towards defence. Funct Ecol 29(4):441–450

    Google Scholar 

  • Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Coumarins - an important class of phytochemicals. In: Rao AV, Rao LG (eds) Phytochemicals – isolation, characterization and role in human health. Intech Open, Rijeka, pp 113–140

    Google Scholar 

  • Mendel MJ, Alford AR, Rajab MS, Bentley MD (1991) Antifeedant effects of citrus limonoids differing in A-ring structure on Colorado potato beetle (Coleoptera: Chrysomelidae) larvae. J Econ Entomol 84(4):1158–1162

    CAS  Google Scholar 

  • Min ZD, Wang SQ, Zheng QT (1989) Four new insect antifeedant neo-clerodane diterpenoids, Ajugacumbins A, B, C and D, from Ajuga decunbens. Chem Pharm Bull 37(9):2505–2508

    CAS  Google Scholar 

  • Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci 19(1):29–35

    CAS  PubMed  Google Scholar 

  • Miyase T, Kawasaki H, Noro T, Uneno A, Fukushina S, Takemoto T (1981) Studies on furanoid diterpenes from Teucrium japonicum (Houtt). Chem Pharm Bull 29(12):3561–3564

    CAS  Google Scholar 

  • Monache FD, Bettolo GBM, Bernays EA (1984) Isolation of insect antifeedant alkaloids from Maytenus rigida (Celastraceae). Z Angew Entomol 97(1–5):406–414

    Google Scholar 

  • Mongkol R, Chavasiri W (2016) Antimicrobial, herbicidal and antifeedant activities of mansonone E from the heartwoods of Mansonia gagei Drumm. J Integr Agric 15(12):2795–2802

    CAS  Google Scholar 

  • Mootoo BS, Ramsewak R, Khan A, Tinto WF, Reynolds WF, McLean S, Yu M (1996) Tetranortriterpenoids from Ruagea glabra. J Nat Prod 59(5):544–547

    CAS  Google Scholar 

  • Mordue (Luntz) AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Sociedade Entomológica do Brasil 29(4):615–632

    Google Scholar 

  • Morimoto M, Kumeda S, Komai K (2000) Insect antifeedant flavonoids from Gnaphalium affine D. Don. J Agric Food Chem 48(5):1888–1891

    CAS  PubMed  Google Scholar 

  • Morimoto M, Tanimoto K, Nakano S, Ozaki T, Nakano A, Komai K (2003) Insect antifeedant activity of flavones and chromones against Spodoptera litura. J Agric Food Chem 51(2):389–393

    CAS  PubMed  Google Scholar 

  • Morris CE (1983) Uptake and metabolism of nicotine by the CNS of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta). J Insect Physiol 29(11):807–817

    CAS  Google Scholar 

  • Morris CE (1984) Eletrophysiological effects of cholinergic agents on the CNS of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta). J Exp Biol 229(3):361–374

    CAS  Google Scholar 

  • Munakata K (1975) Insect antifeeding substances in plant leaves. Pure Appl Chem 42(1–2):57–66

    CAS  Google Scholar 

  • Murakami M, Kijima H (2000) Transduction ion channels directly gated by sugars on the insect taste cell. J Gen Physiol 115(4):455–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy DJ (2017) Alkaloids. In: Thomas B, Murray BG, Murphy DJ (eds) Encylopedia of applied plant sciences, 2nd edn. Academic, Oxford, pp 118–124

    Google Scholar 

  • Murray KD, Hasegawa S, Alford AR (1999) Antifeedant activity of citrus limonoids against Colorado potato beetle: comparison of aglycones and glucosides. Entomol Exp Appl 92(3):331–334

    CAS  Google Scholar 

  • Nakatani M, Iwashita T, Naoki H, Hase T (1985a) Structure of a limonoid antifeedant from Trichilia roka. Phytochemistry 24(1):195–196

    CAS  Google Scholar 

  • Nakatani M, Takao H, Miura I, Hase T (1985b) Azedarachol, a steroid ester antifeedant from Melia azedarach var. japonica. Phytochemistry 24(9):1945–1948

    CAS  Google Scholar 

  • Nakatani M, Huang RC, Okamura H, Iwagawa T (1993) The structure of a new antifeeding Meliacarpinin from Chines Melia azedarach L. Chem Lett 22(12):2125–2128

    Google Scholar 

  • Nakatani M, Huang RC, Okamura H, Naoki H, Iwagawa T (1994) Limonoid antifeedants from Chinese Melia azedarach. Phytochemistry 36(1):39–41

    CAS  Google Scholar 

  • Nakatani M, Zhou JB, Nakayama N, Okamura H, Iwagawa T (1996) Nimbolidins C-E, limonoid antifeedants from Melia toosendan. Phytochemistry 41(3):739–743

    CAS  Google Scholar 

  • Nawrot J, Bloszyk E, Harmatha J, Novotny L, Drozdz B (1986) Action of antifeedants of plant origin on beetles infesting stored products. Acta Entomol Bohemoslov 83(5):327–333

    CAS  Google Scholar 

  • Nawrot J, Koul O, Isman MB, Harmatha J (1991) Naturally occurring antifeedants: effects on two polyphagous lepidopterans. J Appl Entomol 112(1–5):194–201

    Google Scholar 

  • Negherbon WO (1959) Handbook of toxicology, Insecticides, a compendium, vol III. W.B. Saunders Co., Philadelphia, pp 854

    Google Scholar 

  • Nenaah GE (2011) Toxic and antifeedant activities of potato glycoalkaloids against Trogoderma granarium (Coleoptera: Dermestidae). J Stored Prod Res 47(3):185–190

    CAS  Google Scholar 

  • Nenaah GE (2013) Potential of using flavonoids, latex and extracts from Calotropis procera (Ait.) as grain protectants against two coleopteran pests of stored rice. Ind Crops Prod 45:327–334

    CAS  Google Scholar 

  • Nenaah GE (2014) Toxic and antifeedant activities of prenylated flavonoids isolated from Tephrosia apollinea L. against three major coleopteran pests of stored grains with reference to their structure-activity relationship. Nat Prod Res 28(24):2245–2252

    CAS  PubMed  Google Scholar 

  • Nihei KI, Hanke FJ, Asaka Y, Matsumoto T, Kubo I (2002) Insect antifeedants from tropical plants II: structure of Zumsin. J Agric Food Chem 50(18):5048–5052

    CAS  PubMed  Google Scholar 

  • Nihei KI, Asaka Y, Mine Y, Ito C, Furukawa H, Ju-Ichi M, Kubo I (2004) Insect antifeedants from tropical plants: structures of dumnin and dumsenin. J Agric Food Chem 52(11):3325–3328

    CAS  PubMed  Google Scholar 

  • Nihei KI, Asaka Y, Mine Y, Kubo I (2005) Insect antifeedants from Croton jatrophoides: structures of zumketol, zumsenin, and zumsenol. J Nat Prod 68(2):244–247

    CAS  PubMed  Google Scholar 

  • Nihei KI, Asaka Y, Mine Y, Yamada Y, Iigo M, Yanagisawa T, Kubo I (2006) Musidunin and Musiduol, insect antifeedants from Croton jatrophoides. J Nat Prod 69(6):975–977

    CAS  PubMed  Google Scholar 

  • Ohmura W, Doi S, Aoyama M, Ohara S (2000) Antifeedant activity of flavonoids and related compounds against the subterranean termite Coptotermes formosanus Shiraki. J Wood Sci 46(2):149–153

    CAS  Google Scholar 

  • Ortiz de Elguea-Culebras G, Sánchez-Vioque R, Berruga MI, Herraiz-Peñalver D, Santana-Méridas O (2017) Antifeedant effects of common terpenes from Mediterranean aromatic plants on Leptinotarsa decemlineata. J Soil Sci Plant Nutr 17(2):475–485

    Google Scholar 

  • Pan L, Ren L, Chen F, Feng Y, Luo Y (2016) Antifeedant activity of Ginkgo biloba secondary metabolites against Hyphantria cunea larvae: mechanisms and applications. PLoS One 11(5):e0155682. https://doi.org/10.1371/journal.pone.0155682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park IK, Lee HS, Lee SG, Park JD, Ahn YJ (2000) Antifeeding activity of isoquinoline alkaloids identified in Coptis japonica roots against Hyphantria cunea (Lepidoptera: Arctiidae) and Agelastica coerulea (Coleoptera: Galerucinae). J Econ Entomol 93(2):331–335

    CAS  PubMed  Google Scholar 

  • Passreiter CM, Isman MB (1997) Antifeedant bioactivity of sesquiterpene lactones from Neurolaena lobate and their antagonism by γ-aminobutyric acid. Biochem Syst Ecol 25(5):371–377

    CAS  Google Scholar 

  • Paulraj MG, Shanmugam N, Ignacimuthu S (2014) Antifeedant activity and toxicity of two alkaloids from Adhatoda vasica Nees leaves against diamondback moth Plutella xylostella (Linn.) (Lepidoptera: Putellidae) larvae. Arch Phytopathol Plant Protect 47(15):1832–1840

    Google Scholar 

  • Pettei MJ, Miura I, Kubo I, Nakanishi K (1978) Insect antifeedant sesquiterpene lactones from Schkuhria pinnata. Heterocyles 11(1):471–480

    CAS  Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1997) Developing sustainable pest control from chemical ecology. Agric Ecosyst Environ 64(2):149–156

    CAS  Google Scholar 

  • Pillai MG, Dayanandan S, Joy B (2020) Isolation and identification of insect antifeedant compound from ethanol extract of Hemidesmus indicus root. Indian J Agric Res 54(5):571–577

    Google Scholar 

  • Powell RG, Mikolajczak KL, Zilkowski BW, Lu HSM, Mantus EK, Clardy J (1991) Dithyreantrile: an unusual insect antifeedant from Dithyrea wislizenii. Experientia 47(3):304–306

    CAS  PubMed  Google Scholar 

  • Prota N, Bouwmeester HJ, Jongsma MA (2014) Comparative antifeedant activities of polygodial and pyrethrins against whiteflies (Bemisia tabaci) and aphids (Myzus persicae). Pest Manag Sci 70(4):682–688

    CAS  PubMed  Google Scholar 

  • Pungitore CR, Garcia M, Gianello JC, Sosa ME, Tonn CE (2005) Insecticidal and antifeedant effects of Junellia aspera (Verbenaceae) triterpenes and derivatives on Sitophilus oryzae (Coleoptera: Curculionidae). J Stored Prod Res 41(4):433–443

    CAS  Google Scholar 

  • Quiroz A, Mendez L, Mutis A, Hormazabal E, Ortega F, Birkett MA, Parra L (2017) Antifeedant activity of red clover root isoflavonoids on Hylastinus obscurus. J Soil Sci Plant Nutr 17(1):231–239

    CAS  Google Scholar 

  • Raccuglia RA, Bellone G, Ložienė K, Piozzi F, Rosselli S, Maggio A, Bruno M, Simmonds MSJ (2010) Hastifolins A–G, antifeedant neo-clerodane diterpenoids from Scutellaria hastifolia. Phytochemistry 71(17–18):2087–2091

    CAS  PubMed  Google Scholar 

  • Rajkumar V, Gunasekaran C, Christy IK, Dharmaraj J, Chinnaraj P, Paul CA (2019) Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pestic Biochem Physiol 156:138–144

    CAS  PubMed  Google Scholar 

  • Rangarajan A, Miller AR, Veilleux RE (2000) Leptine glycoalkaloids reduce feeding by Colorado potato beetle in Diploid Solanum sp. hybrids. J Am Soc Hortic Sci 125(6):689–693

    CAS  Google Scholar 

  • Reina M, Mericli AH, Cabrera R, González-Coloma A (1995) Pyrrolizidine alkaloids from Heliotropium bovei. Phytochemistry 38(2):355–358

    CAS  Google Scholar 

  • Reina M, González-Coloma A, Gutiérrez C, Cabrera R, Henríquez J, Villarroel L (1997) Bioactive saturated pyrrolizidine alkaloids from Heliotropium floridum. Phytochemistry 46(5):845–853

    CAS  Google Scholar 

  • Reina M, González-Coloma A, Gutiérrez C, Cabrera R, Henriquez J, Villarroel L (1998) Pyrrolizidine alkaloids from Heliotropium megalanthum. J Nat Prod 61(11):1418–1420

    CAS  PubMed  Google Scholar 

  • Rodilla JM, Tinoco MT, Morais JC, Gimenez C, Cabrera R, Martín-Benito D, Castillo L, Gonzalez-Coloma A (2008) Laurus novocanariensis essential oil: seasonal variation and valorization. Biochem Syst Ecol 36(3):167–176

    CAS  Google Scholar 

  • Rose AF, Jones KC, Haddon WF, Dreyer DL (1981) Grindelane-diterpenoid acids from Grindelia humilis: feeding deterrency of diterpene acids towards aphids. Phytochemistry 20(9):2249–2253

    CAS  Google Scholar 

  • Roy A, Saraf S (2006) Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol Pharm Bull 29(2):191–201

    CAS  PubMed  Google Scholar 

  • Ruiz-Vásquez L, Olmeda AS, Zúñiga G, Villarroel L, Echeverri LF, González-Coloma A, Reina M (2017) Insect antifeedant and ixodicidal compounds from Senecio adenotrichius. Chem Biodivers 14(1):e1600155. https://doi.org/10.1002/cbdv.201600155

    Article  CAS  Google Scholar 

  • Sanjayan KP, Partho PD (1993) Influence of asiatic acid, a triterpenoid from Shorea robusta, on the feeding and enzyme activity of Oxya fuscovittata (Insecta, Orthoptera). J Appl Entomol 115(1–5):506–510

    Google Scholar 

  • Santana O, Reina M, Anaya AL, Hernández F, Izquierdo ME, González-Coloma A (2008) 3-O-acetyl-narcissidine, a bioactive alkaloid from Hippeastrum puniceum Lam. (Amaryllidaceae). Zeitschrift für Naturforschung C 63(9–10):639–643

    CAS  Google Scholar 

  • Santana O, Reina M, Fraga BM, Sanz J, González-Coloma A (2012) Antifeedant activity of fatty acid esters and phytosterols from Echium wildpretii. Chem Biodivers 9(3):567–576

    CAS  PubMed  Google Scholar 

  • Saroukolai AT, Nouri-Ganbalani G, Rafiee-Dastjerdi H, Hadian J (2014) Antifeedant activity and toxicity of some plant essential oils to Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Plant Prot Sci 50(4):207–216

    Google Scholar 

  • Saxena BP, Tikku K, Atal CK, Koul O (1986) Insect antifertility and antifeedant allelochemics in Adhatoda vasica. Int J Trop Insect Sci 7(4):489–493

    CAS  Google Scholar 

  • Sbeghen-Loss AC, Mato M, Cesio MV, Frizzo C, de Barros NM, Heinzen H (2011) Antifeedant activity of citrus waste wax and its fractions against the dry wood termite, Cryptotermes brevis. J Insect Sci 11(1):159. https://doi.org/10.1673/031.011.15901

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlyter F, Smitt O, Sjödin K, Högberg H-E, Löfqvist J (2004) Carvone and less volatile analogues as repellent and deterrent antifeedants against the pine weevil, Hylobius abietis. J Appl Entomol 128(9–10):610–619

    CAS  Google Scholar 

  • Schoonhoven LM, Derksen-Koppers I (1976) Effects of some allelochemics on food uptake and survival of a polyphagous aphid, Myzus persicae. Entomol Exp Appl 19(1):52–56

    CAS  Google Scholar 

  • Schwinger M, Ehhammer B, Kraus W (1984) Methodology of the Epilachna varivestis bioassay of antifeedants demonstrated with some compounds from Azadirachta indica and Melia azaderach. In: Schmutterer H, Ascher KRS (eds) Natural pesticides from the neem tree and other tropical plants. Proceedings, 2nd international neem conference, Rauischholzhausen, Germany, pp 181–198

    Google Scholar 

  • Segura-Correa R, Mata R, Anaya AL, Hernandez-Bautista B, Villena R, Soriano-Garcia M, Bye R, Linares E (1993) New tetranortriterpenoids from Swietenia humilis. J Nat Prod 56(9):1567–1574

    CAS  Google Scholar 

  • Seigler DS (1998) Alkaloids derived from anthranilic acid. In: Plant secondary metabolism. Springer, Boston, MA, pp 568–577

    Google Scholar 

  • Shields VDC, Mitchell BK (1995a) Sinigrin as a feeding deterrent in two crucifer-feeding, polyphagous lepidopterous species and the effects of feeding stimulant mixtures on deterrency. Phil Trans R Soc Lond B 347(1322):439–446

    CAS  Google Scholar 

  • Shields VDC, Mitchell BK (1995b) The effect of phagostimulant mixtures on deterrent receptor(s) in two crucifer-feeding lepidopterous species. Phil Trans R Soc Lond B 347(1322):459–464

    CAS  Google Scholar 

  • Shields VDC, Smith KP, Arnold NS, Gordon IM, Shaw TE, Waranch D (2008) The effect of varying alkaloid concentrations on the feeding behavior of gypsy moth larvae, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). Arthropod Plant Interact 2(2):101–107

    PubMed  PubMed Central  Google Scholar 

  • Showler AT, Greenberg SM, Arnason JT (2004) Deterrent effects of four neem-based formulations on gravid female boll weevil (Coleoptera: Curculionidae) feeding and oviposition on cotton squares. J Econ Entomol 97(2):414–421

    CAS  PubMed  Google Scholar 

  • Shtykova L, Masuda M, Eriksson C, Sjödin K, Marling E, Schlyter F, Nydén M (2008) Latex coatings containing antifeedants: formulation, characterization, and application for protection of conifer seedlings against pine weevil feeding. Prog Org Coat 63(2):160–166

    CAS  Google Scholar 

  • Simmonds MSJ (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64(1):21–30

    CAS  PubMed  Google Scholar 

  • Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol 27(5):965–977

    CAS  PubMed  Google Scholar 

  • Simmonds MSJ, Blaney WM, Ley SV, Savona G, Bruno M, Rodriguez B (1989) The antifeedant activity of clerodane diterpenoids from Teucrium. Phytochemistry 28(4):1069–1071

    CAS  Google Scholar 

  • Simmonds MSJ, Stevenson PC, Porter EA, Veitch NC (2001) Insect antifeedant activity of three new tetranortriterpenoids from Trichilia pallida. J Nat Prod 64(8):1117–1120

    CAS  PubMed  Google Scholar 

  • Skuhrovec J, Douda O, Zouhar M, Maňasová M, Božik M, Klouček P (2020) Insecticidal and behavioral effect of microparticles of Pimpinella anisum essential oil on larvae of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J Econ Entomol 113(1):255–262

    CAS  PubMed  Google Scholar 

  • Smart LE, Blight MM, Pickett JA, Pye BJ (1994) Development of field strategies incorporating semiochemicals for the control of the pea and bean weevil, Sitona lineatus L. Crop Prot 13(2):127–135

    Google Scholar 

  • Snyder MJ, Glendinning JI (1996) Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J Comp Physiol A 179(2):255–261

    CAS  PubMed  Google Scholar 

  • Snyder MJ, Hsu E-L, Feyereisen R (1993) Induction of cytochrome P-450 activities by nicotine in the tobacco hornworm, Manduca sexta. J Chem Ecol 19(12):2903–2916

    CAS  PubMed  Google Scholar 

  • Snyder MJ, Walding JK, Feyereisen R (1994) Metabolic fate of the allelochemical nicotine in the tobacco hornworm Manduca sexta. Insect Biochem Mol Biol 24(8):837–846

    CAS  Google Scholar 

  • Solipeta DR, Bandi S, Katragunta K, Mutheneni SR, Katragadda SB (2020) UPLC-MSE guided isolation of new antifeedant limonoids from fruits of Trichilia connaroides. J Agric Food Chem 68(25):6826–6834

    CAS  PubMed  Google Scholar 

  • Souza CM, Baldin ELL, Ribeiro LP, Silva IF, Morando R, Bicalho KU, Vendramim JD, Fernandes JB (2017) Lethal and growth inhibitory activities of Neotropical Annonaceae-derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera. J Pest Sci 90(2):701–709

    Google Scholar 

  • Souza CM, Baldin ELL, Ribeiro LP, dos Santos TLB, da Silva IF, Morando R, Vendramim JD (2019) Antifeedant and growth inhibitory effects of Annonaceae derivatives on Helicoverpa armigera (Hübner). Crop Prot 121:45–50

    Google Scholar 

  • Stevenson PC, Simmonds MSJ, Yule MA, Veitch NC, Kite GC, Irwin D, Legg M (2003) Insect antifeedant furanocoumarins from Tetradium daniellii. Phytochemistry 63(1):41–46

    CAS  PubMed  Google Scholar 

  • Stompor M, Dancewicz K, Gabryś B, Anioł M (2015) Insect antifeedant potential of xanthohumol, isoxanthohumol, and their derivatives. J Agric Food Chem 63(30):6749–6756

    CAS  PubMed  Google Scholar 

  • Thappa RK, Tikku K, Saxena BP, Vaid RM, Bhutani KK (1989) Conessine as a larval growth inhibitor, sterilant, and antifeedant from Holarrhena antidysenterica Wall. Int J Trop Insect Sci 10(2):149–155

    CAS  Google Scholar 

  • Tian X, Li Y, Hao N, Su X, Du J, Hu J, Tian X (2021) The antifeedant, insecticidal and insect growth inhibitory activities of triterpenoid saponins from Clematis aethusifolia Turcz against Plutella xylostella (L.). Pest Manag Sci 77(1):455–463

    Google Scholar 

  • Tripathi AK, Singh D, Jain DC (1990) Persistency of tylophorine as an insect antifeedant against Spilosoma obliqua Walker. Phytother Res 4(4):144–147

    CAS  Google Scholar 

  • van Loon JJA, Schoonhoven LM (1999) Specialist deterrent chemoreceptors enable Pieris caterpillars to discriminate between chemically different deterrents. Entomol Exp Appl 91(1):29–35

    Google Scholar 

  • Wada K, Enomoto Y, Matsui K, Munakata K (1968) Insect antifeedants from Parabenzoin trilobum (I) two new sesquiterpenes, shiromodiol-diacetate and -monoacetate. Tetrahedron Lett 9(45):4673–4676

    Google Scholar 

  • Wakabayashi N, Wu WJ, Waters RM, Redfern RE, Mills Jr. GD, DeMilo AB, Lusby WR, Andrzejewski D (1988) Celangulin: a nonalkaloidal insect antifeedant from Chinese bittersweet, Celastrus angulatus. J Nat Prod 51(3):537–542

    CAS  Google Scholar 

  • Wang WL, Wang Y, Chiu SF (1994) The toxic chemical factors in the fruits of Melia azedarach and their bio-activities toward Pieris rapae. Acta Entomol Sinica 37(1):20–24

    CAS  Google Scholar 

  • Wang JL, Li Y, Lei CL (2009) Evaluation of monoterpenes for the control of Tribolium castaneum (Herbst) and Sitophilus zeamaise Motschulsky. Nat Prod Res 23(12):1080–1088

    PubMed  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75(2):225–233

    CAS  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1):3–19

    CAS  PubMed  Google Scholar 

  • Wink M (2008) Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr Drug Metab 9(10):996–1009

    CAS  PubMed  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2(3):251–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Kashiwagi T, Kuroda I, Chen XH, Tebayashi SI, Kim CS (2008) Antifeedants against Locusta migratoria from the Japanese cedar, Cryptomeria japonica II. Biosci Biotechnol Biochem 72(2):611–614

    CAS  PubMed  Google Scholar 

  • Xie YS, Fields PG, Isman MB, Chen WK, Zhang X (1995) Insecticidal activity of Melia toosendan extracts and toosendanin against three stored product insects. J Stored Prod Res 31(3):259–265

    CAS  Google Scholar 

  • Xu D, Huang Z, Cen YJ, Chen Y, Freed S, Hu XG (2009) Antifeedant activities of secondary metabolites from Ajuga nipponensis against adult of striped flea beetles, Phyllotreta striolata. J Pest Sci 82(2):195–202

    Google Scholar 

  • Yadav PA, Suresh G, Rao MSA, Shankaraiah G, Rani PU, Suresh Babu K (2014) Limonoids from the leaves of Soymida febrifuga and their insect antifeedant activities. Bioorg Med Chem Lett 24(3):888–892

    CAS  PubMed  Google Scholar 

  • Yajima T, Munakata K (1979) Phloroglucinol-type furocoumarins, a group of potent naturally-occurring insect antifeedants. Agric Biol Chem 43(8):1701–1706

    CAS  Google Scholar 

  • Yang H, Piao X, Zhang L, Song S, Xu Y (2018) Ginsenosides from the stems and leaves of Panax ginseng show antifeedant activity against Plutella xylostella (Linnaeus). Ind Crops Prod 124(41):412–417

    CAS  Google Scholar 

  • Yildirim E, Emsen B, Kordali S (2013) Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J Appl Bot Food Qual 86(1):198–204

    CAS  Google Scholar 

  • Yonekura-Sakakibara K, Higashi Y, Nakabayashi R (2019) The origin and evolution of plant flavonoid metabolism. Front Plant Sci 10:943. https://doi.org/10.3389/fpls.2019.00943

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalkow LH, Gordon MM, Lanir N (1979) Antifeedants from rayless goldenrod and oil of pennyroyal: toxic effects for the fall armyworm. J Econ Entomol 72(6):812–815

    Google Scholar 

  • Zangerl AR, Berenbaum MR (1993) Plant chemistry, insect adaptations to plant chemistry, and host plant utilization patterns. Ecology 74(1):47–54

    CAS  Google Scholar 

  • Zapata N, Budia F, Viñuela E, Medina P (2009) Antifeedant and growth inhibitory effects of extracts and drimanes of Drimys winteri stem bark against Spodoptera littoralis (Lep., Noctuidae). Ind Crops Prod 30(1):119–125

    CAS  Google Scholar 

  • Zhang JF, Chen L, Huang S, Shan LH, Gao F, Zhou XL (2017) Diterpenoid alkaloids from two Aconitum species with antifeedant activity against Spodoptera exigua. J Nat Prod 80(12):3136–3142

    CAS  PubMed  Google Scholar 

  • Zhou JB, Okamura H, Iwagawa T, Nakatani M (1996) Limonoid antifeedants from Melia toosendan. Phytochemistry 41(1):117–120

    CAS  Google Scholar 

  • Zuleta-Castro C, Rios D, Hoyos R, Orozco-Sánchez F (2017) First formulation of a botanical active substance extracted from neem cell culture for controlling the armyworm. Agron Sustain Dev 37(40):1–8

    CAS  Google Scholar 

Download references

Acknowledgements

I am thankful to Ms. Swati Das (UGC-SRF), Ms. Anamika Koner (SVMCM, NET-LS), Mr. Syed Husne Mobarak (CSIR-SRF), Ms. Paroma Mitra (Project fellow) and Mr. Rahul Debnath (UGC-SRF) for preparing figures and references of this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barik, A. (2021). Phyto-Antifeedants. In: Omkar (eds) Molecular Approaches for Sustainable Insect Pest Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-3591-5_9

Download citation

Publish with us

Policies and ethics