Skip to main content

Chinese Herbal Medicine and Targeted Delivery Strategy for the Treatment of Kidney Disease

  • Chapter
  • First Online:
Novel Drug Delivery Systems for Chinese Medicines
  • 571 Accesses

Abstract

Chronic kidney disease (CKD) is a worldwide public health issue with poor treatment outcomes and high medical costs. Current treatment options for CKD are limited. A large part of the world’s population has been using Chinese herbal medicine (CHM) for kidney disease treatment, and many active compounds have been identified as useful for CKD. Besides, several well-designed kidney-targeted drug delivery systems have been developed to improve drug efficacy and safety in CKD therapy. In this chapter, the structure and physiological function of the kidney are reviewed. The efficacy of several CHMs, supported by either clinical evidence or experimental studies, and renal targeting delivery strategies are presented. Current challenges for further research are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stanifer, J. W., Kilonzo, K., Wang, D., Su, G., Mao, W., Zhang, L., Zhang, L., Nayak-Rao, S., & Miranda, J. J. (2017). Traditional medicines and kidney disease in low-and middle-income countries: Opportunities and challenges. Seminars in Nephrology, 37, 245–259.

    Article  PubMed  Google Scholar 

  2. Hole, B., Hemmelgarn, B., Brown, E., Brown, M., McCulloch, M. I., Zuniga, C., Andreoli, S. P., Blake, P. G., Couchoud, C., Cueto-Manzano, A. M., Dreyer, G., Garcia Garcia, G., Jager, K. J., McKnight, M., Morton, R. L., Murtagh, F. E. M., Naicker, S., Obrador, G. T., Perl, J., … Caskey, F. J. (2020). Supportive care for end-stage kidney disease: An integral part of kidney services across a range of income settings around the world. Kidney International. Supplement, 10, 86–94.

    Article  Google Scholar 

  3. Zhong, Y. F., Menon, M. C., Deng, Y. Y., Chen, Y. P., & He, C. J. (2015). Recent advances in Traditional Chinese Medicine for kidney disease. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 66, 513–522.

    Article  Google Scholar 

  4. Li, X., & Wang, H. (2005). Chinese herbal medicine in the treatment of chronic kidney disease. Advances in Chronic Kidney Disease, 12, 276–281.

    Article  PubMed  Google Scholar 

  5. Kamaly, N., He, J. C., Ausiello, D. A., & Farokhzad, O. C. (2016). Nanomedicines for renal disease: Current status and future applications. Nature Reviews. Nephrology, 12, 738–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi, C. H., Zuckerman, J. E., Webster, P., & Davis, M. E. (2011). Targeting kidney mesangium by nanoparticles of defined size. The Proceedings of the National Academy of Sciences United States of America, 108, 6656–6661.

    Article  CAS  Google Scholar 

  7. Miner, J. H. (2012). The glomerular basement membrane. Experimental Cell Research, 318, 973–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, C. P., Hu, Y., Lin, J. C., Fu, H. L., Lim, L. Y., & Yuan, Z. X. (2019). Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Medicinal Research Reviews, 39, 561–578.

    Article  PubMed  Google Scholar 

  9. Schlondorff, D., & Banas, B. (2009). The mesangial cell revisited: No cell is an island. Journal of the American Society of Nephrology, 20, 1179–1187.

    Article  CAS  PubMed  Google Scholar 

  10. Mallipattu, S. K., & He, J. C. (2016). The podocyte as a direct target for treatment of glomerular disease? American Journal of Physiology. Renal Physiology, 311, 46–51.

    Article  Google Scholar 

  11. Lemley, K. V. (2016). Glomerular pathology and the progression of chronic kidney disease. American Journal of Physiology. Renal Physiology, 310, F1385–F1388.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, W., & Kim, R. B. (2004). Transporters and renal drug elimination. Annual Review of Pharmacology and Toxicology, 44, 137–166.

    Article  CAS  PubMed  Google Scholar 

  13. Christensen, E. I., Birn, H., Storm, T., Weyer, K., & Nielsen, R. (2012). Endocytic receptors in the renal proximal tubule. Physiology, 27, 223–236.

    Article  CAS  PubMed  Google Scholar 

  14. Dolman, M. E., Harmsen, S., Storm, G., Hennink, W. E., & Kok, R. J. (2010). Drug targeting to the kidney: Advances in the active targeting of therapeutics to proximal tubular cells. Advanced Drug Delivery Reviews, 62, 1344–1357.

    Article  CAS  PubMed  Google Scholar 

  15. Shen, P. C., Yang, X. J., & He, L. Q. (2016). Effect of Astragali and Angelica particle on proteinuria in Chinese patients with primary glomerulonephritis. Journal of Traditional Chinese Medicine, 36, 299–306.

    Article  PubMed  Google Scholar 

  16. Lai, W. L., Yeh, T. H., Chen, P. M., Chan, C. K., Chiang, W. C., Chen, Y. M., Wu, K. D., & Tsai, T. J. (2015). Membranous nephropathy: A review on the pathogenesis, diagnosis, and treatment. Journal of the Formosan Medical Association, 114, 102–111.

    Article  PubMed  Google Scholar 

  17. Zhang, L., Shergis, J. L., Yang, L., Zhang, A. L., Guo, X., Zhang, L., Zhou, S., Zeng, L., Mao, W., & Xue, C. C. (2019). Astragalus membranaceus (Huang Qi) as adjunctive therapy for diabetic kidney disease: An updated systematic review and meta-analysis. Journal of Ethnopharmacology, 239, 111921.

    Article  PubMed  Google Scholar 

  18. Zhang, Q., Liu, L., Lin, W., Yin, S., Duan, A., Liu, Z., & Cao, W. (2017). Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney International, 91, 144–156.

    Article  CAS  PubMed  Google Scholar 

  19. Su, J., Yin, L. P., Zhang, X., Li, B. B., Liu, L., & Li, H. (2013). Chronic allograft nephropathy in rats is improved by the intervention of rhein. Transplantation Proceedings, 45, 2546–2552.

    Article  CAS  PubMed  Google Scholar 

  20. He, Y., Meng, F., Zhang, X., Yang, L., Xiang, R., Wang, D., Zhang, Z., Zhang, C., Bai, H., Wang, J., & Zhang, H. (2019). Effect of emodin on Ang II/βig-h3 signaling pathway in diabetic nephropathy rats kidney. Advances in Integrative Medicine, 6, S99.

    Article  Google Scholar 

  21. Wang, D. T., Huang, R. H., Cheng, X., Zhang, Z. H., Yang, Y. J., & Lin, X. (2015). Tanshinone IIA attenuates renal fibrosis and inflammation via altering expression of TGF-beta/Smad and NF-kappaB signaling pathway in 5/6 nephrectomized rats. International Immunopharmacology, 26, 4–12.

    Article  CAS  PubMed  Google Scholar 

  22. Jia, Q., Zhu, R., Tian, Y., Chen, B., Li, R., Li, L., Wang, L., Che, Y., Zhao, D., Mo, F., Gao, S., & Zhang, D. (2019). Salvia miltiorrhiza in diabetes: A review of its pharmacology, phytochemistry, and safety. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 58, 152871.

    Article  CAS  Google Scholar 

  23. Guo, L., Luo, S., Du, Z., Zhou, M., Li, P., Fu, Y., Sun, X., Huang, Y., & Zhang, Z. (2017). Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis. Nature Communications, 8, 878.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, X. Y., Wang, S. S., Han, Z., Han, F., Chang, Y. P., Yang, Y., Xue, M., Sun, B., & Chen, L. M. (2017). Triptolide restores autophagy to alleviate diabetic renal fibrosis through the miR-141-3p/PTEN/Akt/mTOR pathway. Molecular Therapy--Nucleic Acids, 9, 48–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shahzad, M., Small, D. M., Morais, C., Wojcikowski, K., Shabbir, A., & Gobe, G. C. (2016). Protection against oxidative stress-induced apoptosis in kidney epithelium by Angelica and Astragalus. Journal of Ethnopharmacology, 179, 412–419.

    Article  CAS  PubMed  Google Scholar 

  26. Ren, D., Luo, J., Li, Y., Zhang, J., Yang, J., Liu, J., Zhang, X., Cheng, N., & Xin, H. (2020). Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 67, 153163.

    Article  CAS  Google Scholar 

  27. Liu, C. M., Yang, H. X., Ma, J. Q., Yang, W., Feng, Z. J., Sun, J. M., Cheng, C., Li, J., & Jiang, H. (2018). Role of AMPK pathway in lead-induced endoplasmic reticulum stress in kidney and in paeonol-induced protection in mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 122, 87–94.

    Article  CAS  Google Scholar 

  28. Chen, J., Hou, X. F., Wang, G., Zhong, Q. X., Liu, Y., Qiu, H. H., Yang, N., Gu, J. F., Wang, C. F., Zhang, L., Song, J., Huang, L. Q., Jia, X. B., Zhang, M. H., & Feng, L. (2016). Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses. Journal of Ethnopharmacology, 193, 433–444.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, H. W., Lin, Z. X., Tung, Y. S., Kwan, T. H., Mok, C. K., Leung, C., & Chan, L. S. (2014). Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. Cochrane Database of Systematic Reviews, (12), CD008353.

    Google Scholar 

  30. Li, Y., Xue, W. J., Tian, P. X., Ding, X. M., Yan, H., Pan, X. M., & Feng, X. S. (2009). Clinical application of Cordyceps sinensis on immunosuppressive therapy in renal transplantation. Transplantation Proceedings, 41, 1565–1569.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, Y. P., Chen, J., Jiang, M., Fu, Y. X., Zhu, Y. H., Jiao, N., Liu, L. P., Du, Q., Wu, H. G., Xu, H. Q., & Sun, J. H. (2020). Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling. Life Sciences, 252, 117653.

    Article  CAS  PubMed  Google Scholar 

  32. Zhong, Y. F., Lee, K., Deng, Y. Y., Ma, Y. M., Chen, Y. P., Li, X. L., & Wei, C. G. (2019). Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nature Communications, 10, 4523.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang, M. S., Zhang, Y. N., Xiao, D., Zhang, J., Wang, X. X., Guan, F. Y., Zhang, M., & Chen, L. (2020). Highly bioavailable berberine formulation ameliorates diabetic nephropathy through the inhibition of glomerular mesangial matrix expansion and the activation of autophagy. European Journal of Pharmacology, 873, 172955.

    Article  CAS  PubMed  Google Scholar 

  34. Chen, D. Q., Hu, H. H., Wang, Y. N., Feng, Y. L., Cao, G., & Zhao, Y. Y. (2018). Natural products for the prevention and treatment of kidney disease. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 50, 50–60.

    Article  CAS  Google Scholar 

  35. Zhuang, Z., Wang, Z. H., Huang, Y. Y., Zheng, Q., & Pan, X. D. (2020). Protective effect and possible mechanisms of ligustrazine isolated from Ligusticum wallichii on nephropathy in rats with diabetes: A preclinical systematic review and meta-analysis. Journal of Ethnopharmacology, 252, 112568.

    Article  CAS  PubMed  Google Scholar 

  36. Han, R., Tang, F., Lu, M., Xu, C., Hu, J., Mei, M., & Wang, H. (2016). Protective effects of Astragalus polysaccharides against endothelial dysfunction in hypertrophic rats induced by isoproterenol. International Immunopharmacology, 38, 306–312.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, B., Miao, J., Peng, M., Liu, T., & Miao, M. (2019). Effect of 3:7 ratio of Astragalus total saponins and Curcumin on the diabetic nephropathy rats model. Saudi Journal of Biological Sciences, 26, 188–194.

    Article  CAS  PubMed  Google Scholar 

  38. Farag, M. R., Elhady, W. M., Ahmed, S. Y. A., Taha, H. S. A., & Alagawany, M. (2019). Astragalus polysaccharides alleviate tilmicosin-induced toxicity in rats by inhibiting oxidative damage and modulating the expressions of HSP70, NF-kB and Nrf2/HO-1 pathway. Research in Veterinary Science, 124, 137–148.

    Article  CAS  PubMed  Google Scholar 

  39. Gui, D., Huang, J., Guo, Y., Chen, J., Chen, Y., Xiao, W., Liu, X., & Wang, N. (2013). Astragaloside IV ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NF-κB-mediated inflammatory genes expression. Cytokine, 61, 970–977.

    Article  CAS  PubMed  Google Scholar 

  40. Okuda, M., Horikoshi, S., Matsumoto, M., Tanimoto, M., Yasui, H., & Tomino, Y. (2012). Beneficial effect of Astragalus membranaceus on estimated glomerular filtration rate in patients with progressive chronic kidney disease. Hong Kong Journal of Nephrology, 14, 17–23.

    Article  Google Scholar 

  41. Gao, Y., Zhang, J., Li, G., Xu, H., Yi, Y., Wu, Q., Song, M., Bee, Y. M., Huang, L., Tan, M., Liang, S., & Li, G. (2015). Protection of vascular endothelial cells from high glucose-induced cytotoxicity by emodin. Biochemical Pharmacology, 94, 39–45.

    Article  CAS  PubMed  Google Scholar 

  42. Huang, J., Gong, W., Chen, Z., Huang, J., Chen, Q., Huang, H., & Zhao, C. (2017). Emodin self-emulsifying platform ameliorates the expression of FN, ICAM-1 and TGF-beta1 in AGEs-induced glomerular mesangial cells by promoting absorption. European Journal of Pharmaceutical Sciences, 99, 128–136.

    Article  CAS  PubMed  Google Scholar 

  43. Li, W., Gao, K., & Sun, W. (2019). MON-209 Rhein attenuated palmitic acid-induced renal tubular cell injury by regulating AMPK-mTOR-autophagy pathway. Kidney International Reports, 4, S387.

    Google Scholar 

  44. Sun, H., Luo, G., Xiang, Z., Cai, X., & Chen, D. (2016). Pharmacokinetics and pharmacodynamics study of rhein treating renal fibrosis based on metabonomics approach. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 23, 1661–1670.

    Article  CAS  Google Scholar 

  45. Lee, S. H., Kim, Y. S., Lee, S. J., & Lee, B. C. (2011). The protective effect of Salvia miltiorrhiza in an animal model of early experimentally induced diabetic nephropathy. Journal of Ethnopharmacology, 137, 1409–1414.

    Article  PubMed  Google Scholar 

  46. Xu, Y. M., Ding, G. H., Huang, J., & Xiong, Y. (2016). Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Experimental and Therapeutic Medicine, 12, 2741–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan, Y. G., Che, X. Y., Sun, W., Huang, Y. R., Meng, X. J., Chen, H. L., Shi, X. M., Tu, Y., Wu, W., & Liu, Y. L. (2014). Low-dose of multi-glycoside of Tripterygium wilfordii Hook. f., a natural regulator of TGF-beta1/Smad signaling activity improves adriamycin-induced glomerulosclerosis in vivo. Journal of Ethnopharmacology, 151, 1079–1089.

    Article  CAS  PubMed  Google Scholar 

  48. Lu, Y., Zhang, Y., Li, L., Feng, X., Ding, S., Zheng, W., Li, J., & Shen, P. (2014). TAB1: A target of triptolide in macrophages. Chemistry & Biology, 21, 246–256.

    Article  CAS  Google Scholar 

  49. Sun, M., Song, H., Ye, Y., Yang, Q., Xu, X., Zhu, X., Zhang, J., Shi, S., Wang, J., & Liu, Z. (2019). Differential toxicities of triptolide to immortalized podocytes and the podocytes in vivo. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 109, 2375–2386.

    Article  CAS  Google Scholar 

  50. Wang, K., Wu, J., Xu, J., Gu, S., Li, Q., Cao, P., Li, M., Zhang, Y., & Zeng, F. (2018). Correction of anemia in chronic kidney disease with Angelica sinensis polysaccharide via restoring EPO production and improving iron availability. Frontiers in Pharmacology, 9, 803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fang, L., Xiao, X. F., Liu, C. X., & He, X. (2012). Recent advance in studies on Angelica sinensis. Chinese Herbal Medicines, 4, 12–25.

    CAS  Google Scholar 

  52. Song, J., Meng, L., Li, S., Qu, L., & Li, X. (2009). A combination of Chinese herbs, Astragalus membranaceus var. mongholicus and Angelica sinensis, improved renal microvascular insufficiency in 5/6 nephrectomized rats. Vascular Pharmacology, 50, 185–193.

    Article  CAS  PubMed  Google Scholar 

  53. Ma, X., Dang, C., Kang, H., Dai, Z., Lin, S., Guan, H., Liu, X., Wang, X., & Hui, W. (2015). Saikosaponin-D reduces cisplatin-induced nephrotoxicity by repressing ROS-mediated activation of MAPK and NF-kappaB signalling pathways. International Immunopharmacology, 28, 399–408.

    Article  CAS  PubMed  Google Scholar 

  54. Qiu, Y. Y., Tang, L. Q., & Wei, W. (2017). Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy. Molecular and Cellular Endocrinology, 443, 89–105.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, P., Sun, X., & Zhang, Z. (2014). Kidney–targeted drug delivery systems. Acta Pharmaceutica Sinica B, 4, 37–42.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oroojalian, F., Charbgoo, F., Hashemi, M., Amani, A., Yazdian-Robati, R., Mokhtarzadeh, A., Ramezani, M., & Hamblin, M. R. (2020). Recent advances in nanotechnology-based drug delivery systems for the kidney. Journal of Controlled Release: Official Journal of the Controlled Release Society, 321, 442–462.

    Article  CAS  Google Scholar 

  57. Wang, Y., Wu, Q., Wang, J., Li, L., Sun, X., Zhang, Z., & Zhang, L. (2020). Co-delivery of p38alpha MAPK and p65 siRNA by novel liposomal glomerulus-targeting nano carriers for effective immunoglobulin a nephropathy treatment. Journal of Controlled Release: Official Journal of the Controlled Release Society, 320, 457–468.

    Article  CAS  Google Scholar 

  58. Yuan, Z. X., Jia, L., Lim, L. Y., Lin, J. C., Shu, G., Zhao, L., Ye, G., Liang, X. X., Ji, H. M., & Fu, H. L. (2017). Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes. International Journal of Nanomedicine, 12, 5673–5686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, D., Han, S., Zhu, Y., Hu, F., Wei, Y., & Wang, G. (2018). Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethyleneimine nanoparticles for diabetic nephropathy therapy. International Journal of Nanomedicine, 13, 3507–3527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiang, W. C., Gee, T. M., Altintas, M. M., Sever, S., Ruiters, M. H. J., & Reiser, J. (2010). Establishment of protein delivery systems targeting podocytes. PLoS One, 5, e11837.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Z., Zheng, Q., Han, J., Gao, G. P., Liu, J., Gong, T., Gu, Z. W., Huang, Y., Sun, X., & He, Q. (2009). The targeting of 14-succinate triptolide-lysozyme conjugate to proximal renal tubular epithelial cells. Biomaterials, 30, 1372–1381.

    Article  PubMed  Google Scholar 

  62. Qiao, H. Z., Sun, M. J., Su, Z. G., Xie, Y., Chen, M. L., Zong, L., Gao, Y. H., Li, H. P., Qi, J. P., Zhao, Q., Gu, X. C., & Ping, Q. N. (2014). Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials, 35, 7157–7171.

    Article  CAS  PubMed  Google Scholar 

  63. Lia, J., Zhang, C. T., He, W. M., Qiao, H. Z., Chen, J. H., Wang, K. K., Oupický, D., & Sun, M. J. (2017). Coordination-driven assembly of catechol-modified chitosan for kidney-specific delivery of salvianolic acid B to treat renal fibrosis. Biomaterials Science, 6, 179–188.

    Article  Google Scholar 

  64. Oroojalian, F., Rezayan, A. H., Shier, W. T., Abnous, K., Ramezani, M., Mehrnejad, F., & Ni, A. H. (2017). Efficient megalin targeted delivery to renal proximal tubular cells mediated by modified-polymyxin B-polyethylenimine based nano-gene-carriers. Materials Science and Engineering: C, 79, 770–782.

    Article  CAS  Google Scholar 

  65. Oroojalian, F., Rezayana, A. H., Shier, W. T., Abnous, K., & Ramezani, M. (2017). Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl polyethylenimine-containing nanoplexes. International Journal of Pharmaceutics, 523, 102–120.

    Article  CAS  PubMed  Google Scholar 

  66. Shi, H., Leonhard, W. N., Sijbrandi, N. J., van Steenbergen, M. J., Fens, M. H. A. M., van de Dikkenberg, J. B., Toraño, J. S., Peters, D. J. M., Hennink, W. E., & Kok, R. J. (2019). Folate-dactolisib conjugates for targeting tubular cells in polycystic kidneys. Journal of Controlled Release, 293, 113–125.

    Article  CAS  PubMed  Google Scholar 

  67. Trump, D. P., Mathias, C. J., Yang, Z. F., Low, P. S., Marmion, M., & Green, M. A. (2002). Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate receptor-targeted radiopharmaceutical. Nuclear Medicine and Biology, 29, 569–573.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Gao, L., Qiao, H. (2021). Chinese Herbal Medicine and Targeted Delivery Strategy for the Treatment of Kidney Disease. In: Feng, N., Yang, Z. (eds) Novel Drug Delivery Systems for Chinese Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-16-3444-4_7

Download citation

Publish with us

Policies and ethics