Skip to main content

A Historical Overview and Concepts of Chinese Medicine Preparations and Novel Delivery Systems

  • Chapter
  • First Online:
Novel Drug Delivery Systems for Chinese Medicines
  • 664 Accesses

Abstract

Traditional Chinese medicine (TCM) is widely used in clinic for a long time in China, especially for certain chronic diseases with reliable clinical effects. However, there are challenges in the controllable quality, safety and efficiency, and patient compliance of TCM due to the traditional pharmaceutical approaches in preparation of Chinese medicines. During the past decades, novel drug delivery systems (NDDS) have been developed for Chinese medicines. This chapter presents the historical overview of Chinese medicines regarding the fundamental concepts, sources, characteristics, and preparation approaches. The design principles and current advancements of NDDS for Chinese medicines were also highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Y., & Feng, N. (2015). Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Advances in Colloid and Interface Science, 221, 60–76.

    Article  CAS  PubMed  Google Scholar 

  2. Feng, T., Jia, Q., Meng, X., et al. (2020). Evaluation of genetic diversity and construction of DNA fingerprinting in Polygonatum Mill. based on EST-SSR and SRAP molecular markers. 3 Biotech, 10(7), 322.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang, M., Abdalrahman, H., Sonia, U., et al. (2020). The application of DNA molecular markers in the study of Codonopsis species genetic variation, a review. Cellular and Molecular Biology (Noisy-le-Grand, France), 66(2), 23–30.

    Article  Google Scholar 

  4. Shi, Y., Qiu, L., Guo, L., et al. (2020). K fertilizers reduce the accumulation of Cd in Panax notoginseng (Burk.) F.H. by improving the quality of the microbial community. Frontiers in Plant Science, 11, 888.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hu, L., Chen, X., Yang, J., et al. (2019). Geographic authentication of the traditional Chinese medicine Atractylodes macrocephala Koidz. (Baizhu) using stable isotope and multielement analyses. Rapid Communications in Mass Spectrometry, 33(22), 1703–1710.

    Article  CAS  PubMed  Google Scholar 

  6. Liang, J., Li, W., Jia, X., et al. (2020). Transcriptome sequencing and characterization of Astragalus membranaceus var. mongholicus root reveals key genes involved in flavonoids biosynthesis. Genes Genomics., 42(8), 901–914.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z., Ye, S. Y., & Zhu, R. G. (2020). The extraordinary transformation of traditional Chinese medicine: Processing with liquid excipients. Pharmaceutical Biology, 58(1), 561–573.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J. M., Li, J. Y., Cai, H., et al. (2019). Nrf2 participates in mechanisms for reducing the toxicity and enhancing the antitumour effect of Radix Tripterygium wilfordii to S180-bearing mice by herbal-processing technology. Pharmaceutical Biology, 57(1), 437–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, N., Zhang, D., Zhang, Y. T., et al. (2019). Endothelium corneum gigeriaegalli extract inhibits calcium oxalate formation and exerts anti-urolithic effects. Journal of Ethnopharmacology, 231, 80–89.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, W., Mao, S., Yu, H., et al. (2019). Pinellia pedatisecta lectin exerts a proinflammatory activity correlated with ROS-MAPKs/NF-κB pathways and the NLRP3 inflammasome in RAW264.7 cells accompanied by cell pyroptosis. International Immunopharmacology, 66, 1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, L., Hu, C., Hood, M., et al. (2020). An integrated approach exploring the synergistic mechanism of herbal pairs in a botanical dietary supplement: A case study of a liver protection health food. Int J Genomics., 2020, 9054192.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fueki, T., Tanaka, K., Obara, K., et al. (2020). The acrid raphides in tuberous root of Pinellia ternata have lipophilic character and are specifically denatured by ginger extract. Journal of Natural Medicines, 74(4), 722–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yu, J., Guo, J., Tao, W., et al. (2018). Gancao-Gansui combination impacts gut microbiota diversity and related metabolic functions. Journal of Ethnopharmacology, 214, 71–82.

    Article  PubMed  Google Scholar 

  14. Shen, J., Pu, Z. J., Kai, J., et al. (2017). Comparative metabolomics analysis for the compatibility and incompatibility of kansui and licorice with different ratios by UHPLC-QTOF/MS and multivariate data analysis. Journal of Chromatography B Analytical Technologies in the Biomedical Life Sciences, 1057, 40–45.

    Article  CAS  PubMed  Google Scholar 

  15. Shen, J., Wang, J., Shang, E. X., et al. (2016). The dosage-toxicity-efficacy relationship of kansui and licorice in malignant pleural effusion rats based on factor analysis. Journal of Ethnopharmacology, 186, 251–256.

    Article  CAS  PubMed  Google Scholar 

  16. Du, K., Yang, J., Yang, L., et al. (2020). Chemical profiling and marker characterization of Huangqin decoction prepared with three types of peony root by liquid chromatography with electrospray ionization mass spectrometry. Journal of Separation Science, 43(13), 2558–2570.

    Article  CAS  PubMed  Google Scholar 

  17. Shin, B. K., Kwon, S. W., & Park, J. H. (2015). Chemical diversity of ginseng saponins from Panax ginseng. Journal of Ginseng Research, 39(4), 287–298.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Im, D. S., & Nah, S. Y. (2013). Yin and Yang of ginseng pharmacology: Ginsenosides vs gintonin. Acta Pharmacologica Sinica, 34(11), 1367–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, H. M., Zhao, X. H., Sun, Z. H., et al. (2019). Recognition of the toxicity of aristolochic acid. Journal of Clinical Pharmacy and Therapeutics, 44(2), 157–162.

    Article  PubMed  Google Scholar 

  20. Jiang, Y., Liu, M., Liu, H., et al. (2020). A critical review: Traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochemical Review, 19, 1–41.

    Article  Google Scholar 

  21. Zhang, Y., Qi, D., Gao, Y., et al. (2020). History of uses, phytochemistry, pharmacological activities, quality control and toxicity of the root of Stephania tetrandra S. Moore: A review. Journal of Ethnopharmacology, 260, 112995.

    Article  CAS  PubMed  Google Scholar 

  22. Paniwnyk, L., Beaufoy, E., Lorimer, J. P., et al. (2001). The extraction of rutin from flower buds of Sophora japonica. Ultrasonics Sonochemistry, 8(3), 299–301.

    Article  CAS  PubMed  Google Scholar 

  23. Violon, C. (1997). Belgian (Chinese herb) nephropathy: Why? Journal de Pharmacie de Belgique, 52(1), 7–27.

    CAS  PubMed  Google Scholar 

  24. Sim, H. J., Kim, J. H., Lee, K. R., et al. (2013). Simultaneous determination of structurally diverse compounds in different Fangchi species by UHPLC-DAD and UHPLC-ESI-MS/MS. Molecules, 18(5), 5235–5250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Y., Shi, X., Wu, Z., et al. (2015). Near-infrared for on-line determination of quality parameter of Sophora japonica L. (formula particles): From lab investigation to pilot-scale extraction process. Pharmacognosy Magazine, 11(41), 8–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang, G., Cui, Q., Yin, L. J., et al. (2019). Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. Journal of Pharmaceutical and Biomedical Analysis, 170, 285–294.

    Article  CAS  PubMed  Google Scholar 

  27. Xie, Z., Sun, Y., Lam, S., et al. (2014). Extraction and isolation of flavonoid glycosides from Flos Sophorae Immaturus using ultrasonic-assisted extraction followed by high-speed countercurrent chromatography. Journal of Separation Science, 37(8), 957–965.

    Article  CAS  PubMed  Google Scholar 

  28. Guo, T., Zhang, Y. T., Zhao, J. H., et al. (2015). Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. Journal of Nanbiotechnology, 13, 47.

    Article  Google Scholar 

  29. Guo, T., Zhang, Y. T., Li, Z., et al. (2018). Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from Aconitum sinomontanum. Artificial Cells, Nanomedicine and Biotechnology, 46(8), 1541–1551.

    CAS  Google Scholar 

  30. Zhang, Y. T., Han, M. Q., Shen, L. N., et al. (2015). Solid lipid nanoparticles formulated for transdermal aconitine administration and evaluated in vitro and in vivo. Journal of Biomedical Nanotechnology, 11(2), 351–361.

    Article  CAS  PubMed  Google Scholar 

  31. Yao, H., Huang, X., Li, S., et al. (2017). Simultaneous determination of eight phenolic acids, five saponins and four tanshinones for quality control of compound preparations containing Danshen-Sanqi Herb-pair by HPLC-DAD. Pharmacognosy Magazine, 13(49), 64–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, J. H., Han, Y. L., Zhang, S. Y., et al. (2019). Efficacy and safety of low dose sublingual nifedipine dripping pills (5 mg) in the acute treatment of moderate and severe hypertension: A randomized, double-blind, positive-drug parallel-controlled, multi-center clinical study. Zhonghua Xin Xue Guan Bing Za Zhi, 47(5), 374–380.

    CAS  PubMed  Google Scholar 

  33. Zhang, Y. T., Xu, Y. M., Zhang, S. J., et al. (2014). In vivo microdialysis for the evaluation of transfersomes as a novel transdermal delivery vehicle for cinnamic acid. Drug Development and Industrial Pharmacy, 40(3), 301–307.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, J., Zhao, J. H., Liu, Y., et al. (2012). RGD-modified poly (D,L-lactic acid) nanoparticles enhance tumor targeting of oridonin. International Journal of Nanomedicine, 7, 211–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, Y., Du, Y., Xie, L., et al. (2020). Effects of paeonol and gastroretention tablets of paeonol on experimental gastric ulcers and intestinal flora in rats. Inflammation, 43(6), 2178–2190.

    Article  CAS  PubMed  Google Scholar 

  36. Shen, C., Zhu, J., Song, J., et al. (2020). Formulation of pluronic F127/TPGS mixed micelles to improve the oral absorption of glycyrrhizic acid. Drug Development and Industrial Pharmacy, 46(7), 1100–1107.

    Article  CAS  PubMed  Google Scholar 

  37. Nie, X., Wang, B., Hu, R., et al. (2020). Development and evaluation of controlled and simultaneous release of compound Danshen based on a novel colon-specific osmotic pump capsule. AAPS PharmSciTech, 21(2), 38.

    Article  CAS  PubMed  Google Scholar 

  38. Li, Z., Zhang, Y., Zhu, C., et al. (2020). Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. International Journal of Pharmaceutics, 586, 119576.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, S., Zhang, Y., Wang, Z., et al. (2020). Temperature-sensitive gel-loaded composite nanomedicines for the treatment of cervical cancer by vaginal delivery. International Journal of Pharmaceutics, 586, 119616.

    Article  CAS  PubMed  Google Scholar 

  40. Ye, P., Wei, S., Luo, C., et al. (2020). Long-term effect against methicillin-resistant Staphylococcus aureus of emodin released from coaxial electrospinning nanofiber membranes with a biphasic profile. Biomolecules, 10(3), 362.

    Article  CAS  PubMed Central  Google Scholar 

  41. Xiao, S., Yan, Y., Zhao, J., et al. (2020). Increased microneedle-mediated transdermal delivery of tetramethylpyrazine to the brain, combined with borneol and iontophoresis, for MCAO prevention. International Journal of Pharmaceutics, 575, 118962.

    Article  CAS  PubMed  Google Scholar 

  42. Li, J., Jin, X., Yang, Y., et al. (2020). Trimethyl chitosan nanoparticles for ocular baicalein delivery: Preparation, optimization, in vitro evaluation, in vivo pharmacokinetic study and molecular dynamics simulation. International Journal of Biological Macromolecules, 156, 749–761.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, R., Zhang, C., Li, J., et al. (2019). Laser-triggered polymeric lipoproteins for precision tumor penetrating theranostics. Biomaterials, 221, 119413.

    Article  CAS  PubMed  Google Scholar 

  44. Tan, R., Niu, M., Zhao, J., et al. (2014). Preparation of vincristine sulfate-loaded poly (butyl cyanoacrylate) nanoparticles modified with pluronic F127 and evaluation of their lymphatic tissue targeting. Journal of Drug Targeting, 22(6), 509–517.

    Article  CAS  PubMed  Google Scholar 

  45. Xu, Y., Liu, L. S., Wang, H., et al. (2020). High order self-assembly of dextran nanogels induced by Con A. Journal of Functional Polymer, 33(1), 30–38.

    CAS  Google Scholar 

  46. Song, H. T., Zhang, Q., Wang, H. J., et al. (2007). Preparation of the traditional Chinese medicine compound recipe Shuxiong sustained-release capsules by multiparticulate time-controlled explosion technology. Pharmazie, 62(5), 372–377.

    CAS  PubMed  Google Scholar 

  47. Wang, Z., Ye, B. N., Zhang, Y. T., et al. (2019). Exploring the potential of mesoporous silica as a carrier for Puerarin: Characterization, physical stability, and in vivo pharmacokinetics. AAPS PharmSciTech., 20(7), 289.

    Article  PubMed  Google Scholar 

  48. Chen, Z., Cheng, L., He, Y., et al. (2018). Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. International Journal of Biological Macromolecules, 120(Pt B), 2076–2085.

    Article  CAS  PubMed  Google Scholar 

  49. Feng, S., Feng, N., & Emmanuel, O. S. (2015). Realgar nanoparticle-based microcapsules: Preparation and in-vitro/in-vivo characterizations. Journal of Pharmacy and Pharmacology, 67(1), 35–42.

    PubMed  Google Scholar 

  50. Bonifácio, B. V., Silva, P. B. D., Negri, K. M. S., et al. (2014). Nanotechnology-based drug delivery systems and herbal medicines: A review. International Journal of Nanomedicine, 9(1), 1–15.

    PubMed  Google Scholar 

  51. Wang, H., Xiao, Y., Wang, H., et al. (2019). Development of daidzein nanosuspensions: Preparation, characterization, in vitro evaluation, and pharmacokinetic analysis. International Journal of Pharmaceutics, 566, 67–76.

    Article  CAS  PubMed  Google Scholar 

  52. Amith, K. B., Habbu, P., Thimmasetty, T., et al. (2017). Phytosomes as novel drug delivery system for herbal medicine-a review. Systamatic Reviews in Pharmacy, 8(1), 5–7.

    Google Scholar 

  53. Liu, Y., Huang, P., Hou, X., et al. (2019). Hybrid curcumin-phospholipid complex-near-infrared dye oral drug delivery system to inhibit lung metastasis of breast cancer. International Journal of Nanomedicine, 14, 3311–3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He, Z., Zhang, Y., & Feng, N. (2020). Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Materials Science & Engineering. C, Materials for Biological Applications, 106, 110298.

    Article  CAS  Google Scholar 

  55. Zhang, Y., Zhang, H., Zhang, K., et al. (2020). Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis. Nanomedicine, 28, 102212.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y., Xie, X., Chen, H., et al. (2020). Advances in next-generation lipid-polymer hybrid nanocarriers with emphasis on polymer-modified functional liposomes and cell-based-biomimetic nanocarriers for active ingredients and fractions from Chinese medicine delivery. Nanomedicine, 29, 102237.

    Article  CAS  PubMed  Google Scholar 

  57. Feng, S., Zhao, J. H., Liu, Y., et al. (2012). Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. International Journal of Nanomedicine, 7, 2033–2043.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Huang, X., Wang, P., Li, T., et al. (2020). Self-assemblies based on traditional medicine berberine and cinnamic acid for adhesion-induced inhibition multidrug-resistant Staphylococcus aureus. ACS Applied Materials & Interfaces, 12(1), 227–237.

    Article  CAS  Google Scholar 

  59. Liu, Y., Zhang, P., Feng, N., et al. (2009). Optimization and in situ intestinal absorption of self-microemulsifying drug delivery system of oridonin. International Journal of Pharmaceutics, 365(1–2), 136–142.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, Y. T., Zhao, J. H., Zhang, S. J., et al. (2011). Enhanced transdermal delivery of evodiamine and rutaecarpine using microemulsion. International Journal of Nanomedicine, 6, 2469–2482.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, T., Wang, P., Guo, W., et al. (2019). Natural berberine-based chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano, 13(6), 6770–6781.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, Q., Luan, X., Zheng, M., et al. (2020). Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics, 12(2), 128.

    Article  CAS  PubMed Central  Google Scholar 

  63. Shi, F., Zhang, Y., Yang, G., et al. (2015). Preparation of a micro/nanotechnology based multi-unit drug delivery system for a Chinese medicine Niuhuang Xingxiao Wan and assessment of its antitumor efficacy. International Journal of Pharmaceutics, 492(1–2), 244–247.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China [82074279, 82074031] and the Natural Science Foundation of Shanghai [20ZR1458300].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianping Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., He, Z., He, Y., Hou, X., Feng, N. (2021). A Historical Overview and Concepts of Chinese Medicine Preparations and Novel Delivery Systems. In: Feng, N., Yang, Z. (eds) Novel Drug Delivery Systems for Chinese Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-16-3444-4_1

Download citation

Publish with us

Policies and ethics