Skip to main content

Centrality Measures: A Tool to Identify Key Actors in Social Networks

  • Chapter
  • First Online:
Principles of Social Networking

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 246))

Abstract

Experts from several disciplines have been widely using centrality measures for analyzing large as well as complex networks. These measures rank nodes/edges in networks by quantifying a notion of the importance of nodes/edges. Ranking aids in identifying important and crucial actors in networks. In this chapter, we summarize some of the centrality measures that are extensively applied for mining social network data. We also discuss various directions of research related to these measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Google Scholar 

  2. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42 (2007)

    Google Scholar 

  3. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of Facebook networks. Phys. A 391(16), 4165–4180 (2012)

    Google Scholar 

  4. Wasserman, S., Faust, K., et al.: Social Network Analysis: Methods and Applications. Cambridge University Press (1994)

    Google Scholar 

  5. Carrington, P.J., Scott, J., Wasserman, S.: Models and Methods in Social Network Analysis. Cambridge University Press (2005)

    Google Scholar 

  6. Scott, J., Carrington, P.J.: The SAGE Handbook of Social Network Analysis. SAGE Publications (2011)

    Google Scholar 

  7. Knoke, D., Yang, S.: Social Network Analysis. SAGE Publications (2019)

    Google Scholar 

  8. Freeman, L.: The Development of Social Network Analysis, vol. 1. Empirical Press (2004)

    Google Scholar 

  9. Everett, M.G., Borgatti, S.P.: The centrality of groups and classes. J. Math. Sociol. 23(3), 181–201 (1999)

    Google Scholar 

  10. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)

    Google Scholar 

  11. Harary, F.: Status and contrastatus. Sociometry, 23–43 (1959)

    Google Scholar 

  12. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  14. Bavelas, A.: A mathematical model for group structures. Hum. Organ. 7(3), 16–30 (1948)

    Article  Google Scholar 

  15. Anthonisse, J.M.: The rush in a directed graph. Stichting Mathematisch Centrum. Mathematische Besliskunde (BN 9/71), 1–10 (1971)

    Google Scholar 

  16. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  17. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

    Google Scholar 

  18. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the north american power grid. Eur. Phys. J. B-Condens. Matter Complex Syst. 46(1), 101–107 (2005)

    Article  Google Scholar 

  19. Lin, G., Di, Z., Fan, Y.: Cascading failures in complex networks with community structure. Int. J. Mod. Phys. C 25(05), (2014)

    Google Scholar 

  20. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)

    Google Scholar 

  21. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)

    Article  Google Scholar 

  22. Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005)

    Google Scholar 

  23. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc. Netw. 28(4), 466–484 (2006)

    Google Scholar 

  24. Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: a survey. Soc. Netw. Anal. Min. 8(1), 13 (2018)

    Article  Google Scholar 

  25. Landherr, A., Friedl, B., Heidemann, J.: A critical review of centrality measures in social networks. Bus. Inf. Syst. Eng. 2(6), 371–385 (2010)

    Article  Google Scholar 

  26. Lee, J.-Y.: Centrality measures for bibliometric network analysis. J. Korean Soc. Libr. Inf. Sci. 40(3), 191–214 (2006)

    Google Scholar 

  27. Valente, T.W., Coronges, K., Lakon, C., Costenbader, E.: How correlated are network centrality measures? Connect. (Toronto, Ont.) 28(1), 16 (2008)

    Google Scholar 

  28. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  29. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  30. Bonacich, P., Lloyd, P.: Eigenvector-like measures of centrality for asymmetric relations. Soc. Netw. 23(3), 191–201 (2001)

    Article  Google Scholar 

  31. Hubbell, C.H.: An Input-Output Approach to Clique Identification, pp. 377–399. Sociometry (1965)

    Google Scholar 

  32. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine (1998)

    Google Scholar 

  33. Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing Order to the Web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  34. Matthew, O.: Jackson. Social and Economic Networks. Princeton University Press, Princeton, NJ, USA (2008)

    Google Scholar 

  35. Saxena, R., Kaur, S., Bhatnagar, V.: Social centrality using network hierarchy and community structure. Data Min. Knowl. Disc. 32(5), 1421–1443 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stephenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11(1), 1–37 (1989)

    Article  MathSciNet  Google Scholar 

  37. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. Netw. 17(1), 57–63 (1995)

    Article  Google Scholar 

  38. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In: Annual Symposium on Theoretical Aspects of Computer Science, pp. 533–544. Springer (2005)

    Google Scholar 

  39. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144) (2013)

    Google Scholar 

  40. Yoshida, Y.: Almost linear-time algorithms for adaptive betweenness centrality using hypergraph sketches. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1416–1425 (2014)

    Google Scholar 

  41. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  42. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  43. Warshall, S.: A theorem on boolean matrices. J. ACM (JACM) 9(1), 11–12 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sariyüce, A.E., Kaya, K., Saule, E., Çatalyürek, Ü.V.: Graph manipulations for fast centrality computation. ACM Trans. Knowl. Discov. Data (TKDD) 11(3), 1–25 (2017)

    Google Scholar 

  45. Kintali, S.: Betweenness centrality: algorithms and lower bounds. arXiv:0809.1906 (2008)

  46. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  47. Baglioni, M., Geraci, F., Pellegrini, M., Lastres, E.: Fast exact and approximate computation of betweenness centrality in social networks. In: State of the Art Applications of Social Network Analysis, pp. 53–73. Springer (2014)

    Google Scholar 

  48. Puzis, R., Elovici, Y., Zilberman, P., Dolev, S., Brandes, U.: Topology manipulations for speeding betweenness centrality computation. J. Complex Netw. 3(1), 84–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sariyüce, A.E., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Shattering and compressing networks for betweenness centrality. In: SIAM Data Mining Conference (SDM). SIAM (2013)

    Google Scholar 

  50. Erdos, D., Ishakian, V., Bestavros, A., Terzi, E.: A divide-and-conquer algorithm for betweenness centrality. arXiv:1406.4173 (2014)

  51. Chehreghani, M.H., Bifet, A., Abdessalem, T.: Efficient exact and approximate algorithms for computing betweenness centrality in directed graphs. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 752–764. Springer (2018)

    Google Scholar 

  52. Bentert, M., Dittmann, A., Kellerhals, L., Nichterlein, A., Niedermeier, R.: An adaptive version of brandes’ algorithm for betweenness centrality. arXiv:1802.06701 (2018)

  53. Daniel, C., Furno, A., Zimeo, E.: Cluster-based computation of exact betweenness centrality in large undirected graphs. In: 2019 IEEE International Conference on Big Data (Big Data), pages 603–608. IEEE (2019)

    Google Scholar 

  54. Wilkinson, J.H.: The Algebraic Eigenvalue Problem, vol. 87. Clarendon press Oxford (1965)

    Google Scholar 

  55. Ulrik, B., Thomas, E.: Network Analysis: Methodological Foundations, vol. 3418. Springer (2005)

    Google Scholar 

  56. Eppstein, D., Wang, J.: Fast approximation of centrality. J. Graph Algorithms Appl. 8, 39–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Resampling-based framework for estimating node centrality of large social network. In: Discovery Science, pp. 228–239. Springer (2014)

    Google Scholar 

  58. Rattigan, M.J., Maier, M., Jensen, D.: Using structure indices for efficient approximation of network properties. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 357–366 (2006)

    Google Scholar 

  59. Cohen, E., Delling, D., Pajor, T., Werneck., R.F.: Computing classic closeness centrality, at scale. In: Proceedings of the Second ACM Conference on Online Social Networks, pp. 37–50 (2014)

    Google Scholar 

  60. Ufimtsev, V., Bhowmick, S.: An extremely fast algorithm for identifying high closeness centrality vertices in large-scale networks. In: IA3@ SC, pp. 53–56 (2014)

    Google Scholar 

  61. Murai, S.: Theoretically and empirically high quality estimation of closeness centrality. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 985–990. IEEE (2017)

    Google Scholar 

  62. Brandes, U., Pich, C.: Centrality estimation in large networks. Int. J. Bifurc. Chaos 17(07), 2303–2318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Proceedings of the 5th International Conference on Algorithms and Models for the Web-Graph, WAW’07, pp. 124–137. Springer, Berlin (2007)

    Google Scholar 

  64. Geisberger, R., Sanders, P., Schultes, D.: Better Approximation of Betweenness Centrality, vol. 8, pp. 90–100 (2008)

    Google Scholar 

  65. Gkorou, D., Pouwelse, J., Epema, D., Kielmann, T., van Kreveld, M., Niessen, W.: Efficient approximate computation of betweenness centrality. In: 16th Annual Conference of the Advanced School for Computing and Imaging (ASCI 2010) (2010)

    Google Scholar 

  66. Ercsey-Ravasz, M., Lichtenwalter, R.N., Chawla, N.V., Toroczkai, Z.: Range-limited centrality measures in complex networks. Phys. Rev. E 85(6), 066103 (2012)

    Google Scholar 

  67. Gkorou, D., Pouwelse, J., Epema, D.: Betweenness centrality approximations for an internet deployed p2p reputation system. In: Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), IEEE International Symposium on 2011, pp. 1627–1634. IEEE (2011)

    Google Scholar 

  68. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 413–422. ACM (2014)

    Google Scholar 

  69. Chehreghani, M. H.: An efficient algorithm for approximate betweenness centrality computation. Comput. J. bxu003 (2014)

    Google Scholar 

  70. Agarwal, M., Singh, R.R., Chaudhary, S., Iyengar, S.R.S.: An efficient estimation of a node’s betweenness. In: Complex Networks VI, pp. 111–121. Springer (2015)

    Google Scholar 

  71. Singh, R.R., Iyengar, S.R.S., Chaudhary, S., Agarwal, M.: An efficient heuristic for betweenness estimation and ordering. Soc. Netw. Anal. Min. 8(1), 66 (2018)

    Google Scholar 

  72. Borassi, M., Natale, E.: Kadabra is an adaptive algorithm for betweenness via random approximation. J. Exp. Algorithmics (JEA) 24(1), 1–35 (2019)

    MathSciNet  MATH  Google Scholar 

  73. Chehreghani, M.H., Abdessalem, T., Bifet, A.: Metropolis-hastings algorithms for estimating betweenness centrality talel abdessalem. In: 22nd International Conference on Extending Database Technology EDBT 2019. Lisbon, Portugal (2019)

    Google Scholar 

  74. Furno, A., El Faouzi, N.E., Sharma, R., Zimeo, E.: Two-level clustering fast betweenness centrality computation for requirement-driven approximation. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1289–1294. IEEE (2017)

    Google Scholar 

  75. Furno, A., El Faouzi, N.E., Sharma, R., Zimeo, E.: Fast approximated betweenness centrality of directed and weighted graphs. In: International Conference on Complex Networks and their Applications, pp. 52–65. Springer (2018)

    Google Scholar 

  76. Haghir Chehreghani, M., Bifet, A., Abdessalem, T.: Adaptive algorithms for estimating betweenness and k-path centralities. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1231–1240 (2019)

    Google Scholar 

  77. Ostrowski, D.A.: An approximation of betweenness centrality for social networks. In: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), pp. 489–492. IEEE (2015)

    Google Scholar 

  78. Matta, J., Ercal, G., Sinha, K.: Comparing the speed and accuracy of approaches to betweenness centrality approximation. Comput. Soc. Netw. 6(1), 2 (2019)

    Article  Google Scholar 

  79. Wink, A.M., de Munck, J.C., van der Werf, Y.D., van den Heuvel, O.A., Barkhof, F.: Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connect. 2(5), 265–274 (2012)

    Google Scholar 

  80. Kumar, A., Mehrotra, K. G., Mohan, C. K.: Neural networks for fast estimation of social network centrality measures. In: Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO-2015), pp. 175–184. Springer (2015)

    Google Scholar 

  81. Charalambous, T., Hadjicostis, C.N., Rabbat, M.G., Johansson, M.: Totally asynchronous distributed estimation of eigenvector centrality in digraphs with application to the pagerank problem. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 25–30. IEEE (2016)

    Google Scholar 

  82. Ruggeri, N., De Bacco, C.: Sampling on networks: estimating eigenvector centrality on incomplete networks. In: International Conference on Complex Networks and Their Applications, pp. 90–101. Springer (2019)

    Google Scholar 

  83. Mitliagkas, I., Borokhovich, M., Dimakis, A.G., Caramanis, C.: Frogwild! fast pagerank approximations on graph engines. Proc. VLDB Endow. 8(8), 874–885 (2015). April

    Article  Google Scholar 

  84. Yan, Y., Xiao, L., Xintian, Z.: Analyzing and identifying of cascading failure in supply chain networks. In: 2010 International Conference on Logistics Systems and Intelligent Management, vol. 3, pp. 1292–1295 (2010)

    Google Scholar 

  85. Kas, M., Carley, K.M., Carley, L.R.: Incremental closeness centrality for dynamically changing social networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1250–1258 (2013)

    Google Scholar 

  86. Sariyüce, A.E., Kaya, K., Saule, E., Çatalyiirek, Ü.V.: Incremental algorithms for closeness centrality. In: 2013 IEEE International Conference on Big Data, pp. 487–492. IEEE (2013)

    Google Scholar 

  87. Yen, C.C., Yeh, M.Y., Chen, M.S.: An efficient approach to updating closeness centrality and average path length in dynamic networks. In: 2013 IEEE 13th International Conference on Data Mining, pp. 867–876. IEEE (2013)

    Google Scholar 

  88. Wei, W., Carley, K.: Real time closeness and betweenness centrality calculations on streaming network data (2014)

    Google Scholar 

  89. Khopkar, S.S., Nagi, R., Nikolaev, A.G., Bhembre, V.: Efficient algorithms for incremental all pairs shortest paths, closeness and betweenness in social network analysis. Soc. Netw. Anal. Min. 4(1), 1–20 (2014)

    Google Scholar 

  90. Sarıyüce, A.E., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Incremental closeness centrality in distributed memory. Parallel Comput. 47, 3–18 (2015)

    Google Scholar 

  91. Santos, E.E., Korah, J., Murugappan, V., Subramanian, S.: Efficient anytime anywhere algorithms for closeness centrality in large and dynamic graphs. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 1821–1830. IEEE (2016)

    Google Scholar 

  92. Ni, P., Hanai, M., Tan, W.J., Cai, W.: Efficient closeness centrality computation in time-evolving graphs. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 378–385 (2019)

    Google Scholar 

  93. Shao, Z., Guo, N., Gu, Y., Wang, Z., Li, F., Yu, G.: Efficient closeness centrality computation for dynamic graphs. In: International Conference on Database Systems for Advanced Applications, pp. 534–550. Springer (2020)

    Google Scholar 

  94. Vignesh, B., Ramachandran, S., Iyengar, D., Rangan, D.C.P., et al.: A lookahead algorithm to compute betweenness centrality. arXiv:1108.3286 (2011)

  95. Lee, G.S., Djauhari, M.A.: An overall centrality measure: the case of us stock market. Int. J. Electr. Comput. Sci. 12(6), (2012)

    Google Scholar 

  96. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness centrality. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom), pp. 11–20 (2012)

    Google Scholar 

  97. Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM ’13, pp. 33–40, New York, USA. ACM (2013)

    Google Scholar 

  98. Ramalingam, G., Reps, T.: On the Computational Complexity of Incremental Algorithms. University of Wisconsin-Madison, Computer Sciences Department (1991)

    Google Scholar 

  99. Kas, M., Carley, K.M., Carley, L.R.: An incremental algorithm for updating betweenness centrality and k-betweenness centrality and its performance on realistic dynamic social network data. Soc. Netw. Anal. Min. 4(1), 1–23 (2014)

    Google Scholar 

  100. Nasre, M., Pontecorvi, M., Ramachandran, V.: Betweenness centrality–incremental and faster. In: Mathematical Foundations of Computer Science 2014, pp. 577–588. Springer (2014)

    Google Scholar 

  101. Nasre, M., Pontecorvi, M., Ramachandran, V.: Decremental all-pairs all shortest paths and betweenness centrality. In: Algorithms and Computation, pp. 766–778. Springer (2014)

    Google Scholar 

  102. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. J. ACM (JACM) 51(6), 968–992 (2004)

    Google Scholar 

  103. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness centrality in evolving graphs. arXiv:1401.6981 (2014)

  104. Pontecorvi, M., Ramachandran, V.: Fully dynamic all pairs all shortest paths. arXiv:1412.3852 (2014)

  105. Pontecorvi, M., Ramachandran, V.: A faster algorithm for fully dynamic betweenness centrality. arXiv:1506.05783 (2015)

  106. Pontecorvi, M., Ramachandran, V.: Fully dynamic betweenness centrality. In: Algorithms and Computation, pp. 331–342. Springer (2015)

    Google Scholar 

  107. Singh, R.R., Goel, K., Iyengar, S.R.S., Gupta, S., et al.: A faster algorithm to update betweenness centrality after node alteration. In: Algorithms and Models for the Web Graph, pp. 170–184. Springer (2013)

    Google Scholar 

  108. Singh, R.R., Goel, K., Iyengar, S.R.S., Gupta, S.: A faster algorithm to update betweenness centrality after node alteration. Internet Math. 11(4–5), 403–420 (2015)

    Google Scholar 

  109. Hayashi, T., Akiba, T., Yoshida, Y.: Fully dynamic betweenness centrality maintenance on massive networks. Proc. VLDB Endow. 9(2), 48–59 (2015)

    Article  Google Scholar 

  110. Bergamini, E., Meyerhenke, H., Ortmann, M., Slobbe, A.: Faster betweenness centrality updates in evolving networks. In: 16th International Symposium on Experimental Algorithms (SEA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  111. Tsalouchidou, I., Baeza-Yates, R., Bonchi, F., Liao, K., Sellis, T.: Temporal betweenness centrality in dynamic graphs. Int. J. Data Sci. Anal. 1–16 (2019)

    Google Scholar 

  112. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pagerank. arXiv:1006.2880 (2010)

  113. Rossi, R.A., Gleich, D.F.: Dynamic pagerank using evolving teleportation. In: International Workshop on Algorithms and Models for the Web-Graph, pp. 126–137. Springer (2012)

    Google Scholar 

  114. Rozenshtein, P., Gionis, A.: Temporal pagerank. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 674–689. Springer (2016)

    Google Scholar 

  115. Zhan, Z., Hu, R., Gao, X., Huai, N.: Fast incremental pagerank on dynamic networks. In: International Conference on Web Engineering, pp. 154–168. Springer (2019)

    Google Scholar 

  116. Nathan, E., Bader, D. A.: A dynamic algorithm for updating katz centrality in graphs. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 149–154 (2017)

    Google Scholar 

  117. Sarmento, R.P., Cordeiro, M., Brazdil, P., Gama, J.: Efficient incremental laplace centrality algorithm for dynamic networks. In: International Conference on Complex Networks and their Applications, pp. 341–352. Springer (2017)

    Google Scholar 

  118. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  119. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks, vol. 4. World Scientific (2016)

    Google Scholar 

  120. Wang, Y., Yuan, Y., Ma, Y., Wang, G.: Time-dependent graphs: definitions, applications, and algorithms. Data Sci. Eng. 4(4), 352–366 (2019)

    Article  Google Scholar 

  121. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev. E 85(2), 026107 (2012)

    Google Scholar 

  122. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84(1), 016105 (2011)

    Google Scholar 

  123. Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul. 15(1), 537–574 (2017)

    Google Scholar 

  124. Rocha, L.E.C., Masuda, N.: Random walk centrality for temporal networks. New J. Phys. 16(6), 063023 (2014)

    Google Scholar 

  125. Lv, L., Zhang, K., Zhang, T., Bardou, D., Zhang, J., Cai, Y.: Pagerank centrality for temporal networks. Phys. Lett. A 383(12), 1215–1222 (2019)

    Article  Google Scholar 

  126. Bergamini, E., Meyerhenke, H., Staudt, C.L.: Approximating betweenness centrality in large evolving networks. arXiv:1409.6241 (2014)

  127. Bergamini, E., Meyerhenke, H.: Fully-dynamic approximation of betweenness centrality. arXiv:1504.07091 (2015)

  128. Riondato, M., Upfal, E.: Abra: approximating betweenness centrality in static and dynamic graphs with rademacher averages. ACM Trans. Knowl. Discov. Data (TKDD) 12(5), 1–38 (2018)

    Article  Google Scholar 

  129. Chehreghani, M.H., Bifet, A., Abdessalem, T.: Dybed: an efficient algorithm for updating betweenness centrality in directed dynamic graphs. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 2114–2123. IEEE (2018)

    Google Scholar 

  130. Zhang, H., Lofgren, P., Goel, A.: Approximate personalized pagerank on dynamic graphs. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1315–1324 (2016)

    Google Scholar 

  131. Nathan, E., Bader, D.A.: Approximating personalized katz centrality in dynamic graphs. In: International Conference on Parallel Processing and Applied Mathematics, pp. 290–302. Springer (2017)

    Google Scholar 

  132. Bader, D.A., Madduri, K., et al.: Parallel algorithms for evaluating centrality indices in real-world networks. In: International Conference on Parallel Processing, ICPP 2006, pp. 539–550. IEEE (2006)

    Google Scholar 

  133. García, J.F., Carriegos, M.V.: On parallel computation of centrality measures of graphs. J. Supercomput. 75(3), 1410–1428 (2019)

    Google Scholar 

  134. Santos, E.E., Pan, L., Arendt, D., Pittkin, M.: An effective anytime anywhere parallel approach for centrality measurements in social network analysis. In: 2006 IEEE International Conference on Systems, Man and Cybernetics, vol. 6, pp. 4693–4698. IEEE (2006)

    Google Scholar 

  135. Shukla, K., Regunta, S.C., Tondomker, S.H., Kothapalli, K.: Efficient parallel algorithms for betweenness-and closeness-centrality in dynamic graphs. In: Proceedings of the 34th ACM International Conference on Supercomputing, pp. 1–12 (2020)

    Google Scholar 

  136. Wang, W., Tang, C.Y.: Distributed computation of classic and exponential closeness on tree graphs. In: 2014 American Control Conference, pp. 2090–2095. IEEE (2014)

    Google Scholar 

  137. Wang, W., Tang, C.Y.: Distributed estimation of closeness centrality. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 4860–4865. IEEE (2015)

    Google Scholar 

  138. You, K., Tempo, R., Qiu, L.: Distributed algorithms for computation of centrality measures in complex networks. IEEE Trans. Autom. Control 62(5), 2080–2094 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  139. Bernaschi, M., Carbone, G., Vella, F.: Scalable betweenness centrality on multi-gpu systems. In: Proceedings of the ACM International Conference on Computing Frontiers, pp. 29–36 (2016)

    Google Scholar 

  140. Castiello, A., Fucci, G., Furno, A., Zimeo, E.: Scalability analysis of cluster-based betweenness computation in large weighted graphs. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4006–4015. IEEE (2018)

    Google Scholar 

  141. Edmonds, N., Hoefler, T., Lumsdaine, A.: A space-efficient parallel algorithm for computing betweenness centrality in distributed memory. In: 2010 International Conference on High Performance Computing (HiPC), pp. 1–10. IEEE (2010)

    Google Scholar 

  142. Madduri, K., Ediger, D., Jiang, K., Bader, D.A., Chavarria-Miranda, D., et al.: A faster parallel algorithm and efficient multithreaded implementations for evaluating betweenness centrality on massive datasets. In: IEEE International Symposium on Parallel & Distributed Processing, 2009. IPDPS 2009, pp. 1–8. IEEE (2009)

    Google Scholar 

  143. McLaughlin, A., Bader, D.A., et al.: Revisiting edge and node parallelism for dynamic gpu graph analytics. In: 2014 IEEE International Parallel & Distributed Processing Symposium Workshops (IPDPSW), pp. 1396–1406. IEEE (2014)

    Google Scholar 

  144. Prountzos, D., Pingali, K.: Betweenness centrality: algorithms and implementations. In: ACM SIGPLAN Notices, vol. 48, pp. 35–46. ACM (2013)

    Google Scholar 

  145. Solomonik, E., Besta, M., Vella, F., Hoefler, T.: Scaling betweenness centrality using communication-efficient sparse matrix multiplication. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14 (2017)

    Google Scholar 

  146. van der Grinten, A., Angriman, E., Meyerhenke, H.: Parallel adaptive sampling with almost no synchronization. In: European Conference on Parallel Processing, pp. 434–447. Springer (2019)

    Google Scholar 

  147. van der Grinten, A., Angriman, E., Meyerhenke, H.: Scaling up network centrality computations–a brief overview. IT-Inf. Technol. 62(3–4), 189–204 (2020)

    Google Scholar 

  148. van der Grinten, A., Angriman, E., Meyerhenke, H.: Scaling betweenness approximation to billions of edges by mpi-based adaptive sampling. arXiv:1910.11039 (2019)

  149. Vella, F., Bernaschi, M., Carbone, G.: Dynamic merging of frontiers for accelerating the evaluation of betweenness centrality. J. Exp. Algorithmics (JEA) 23, 1–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  150. Crescenzi, P., Fraigniaud, P., Paz, A.: Simple and fast distributed computation of betweenness centrality. arXiv:2001.08108 (2020)

  151. Hoang, L., Pontecorvi, M., Dathathri, R., Gill, G., You, B., Pingali, K., Ramachandran, V.: A round-efficient distributed betweenness centrality algorithm. In: Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, pp. 272–286 (2019)

    Google Scholar 

  152. Wang, W., Tang, C.Y.: Distributed computation of node and edge betweenness on tree graphs. In: 52nd IEEE Conference on Decision and Control, pp. 43–48. IEEE (2013)

    Google Scholar 

  153. Wang, W., Tang, C.Y.: Distributed estimation of betweenness centrality. In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 250–257. IEEE, 2015

    Google Scholar 

  154. Bian, R., Koh, Y.S., Dobbie, G., Divoli, A.: Identifying top-k nodes in social networks: a survey. ACM Comput. Surv. (CSUR) 52(1), 1–33 (2019)

    Google Scholar 

  155. Bisenius, P., Bergamin, E., Angriman, E., Meyerhenke, H.: Computing top-k closeness centrality in fully-dynamic graphs. In: 2018 Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 21–35. SIAM (2018)

    Google Scholar 

  156. Okamoto, K., Chen, W., Li, X.Y.: Ranking of closeness centrality for large-scale social networks. In: International Workshop on Frontiers in Algorithmics, pp. 186–195. Springer (2008)

    Google Scholar 

  157. Mahyar, H., Hasheminezhad, R., Ghalebi, E., Nazemian, A., Grosu, R., Movaghar, A., Rabiee, H.R.: Compressive sensing of high betweenness centrality nodes in networks. Phys. Stat. Mech. Appl. 497, 166–184 (2018)

    Google Scholar 

  158. Nakajima, K., Shudo, K.: Estimating high betweenness centrality nodes via random walk in social networks. J. Inf. Process. 28, 436–444 (2020)

    Google Scholar 

  159. Zhan, J., Gurung, S., Parsa, S.P.K.: Identification of top-k nodes in large networks using katz centrality. J. Big Data 4(1), 1–19 (2017)

    Article  Google Scholar 

  160. Saxena, A., Gera, R., Iyengar, S.R.S.: Estimating degree rank in complex networks. Soc. Netw. Anal. Min. 8(1), 42 (2018)

    Google Scholar 

  161. Saxena, A., Gera, R., Iyengar, S.R.S.: A heuristic approach to estimate nodes’ closeness rank using the properties of real world networks. Soc. Netw. Anal. Min. 9(1), 3 (2019)

    Google Scholar 

  162. Newman, M.E.J.: Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)

    Google Scholar 

  163. Qi, X., Fuller, E., Qin, W., Yezhou, W., Zhang, C.-Q.: Laplacian centrality: a new centrality measure for weighted networks. Inf. Sci. 194, 240–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  164. Wei, D., Deng, X., Zhang, X., Deng, Y., Mahadevan, S.: Identifying influential nodes in weighted networks based on evidence theory. Phys. A 392(10), 2564–2575 (2013)

    Article  Google Scholar 

  165. Candeloro, L., Savini, L., Conte, A.: A new weighted degree centrality measure: The application in an animal disease epidemic. PLoS One 11(11), e0165781 (2016)

    Google Scholar 

  166. Li, M., Wang, J., Wang, H., Pan, Y.: Essential proteins discovery from weighted protein interaction networks. In: International Symposium on Bioinformatics Research and Applications, pp. 89–100. Springer (2010)

    Google Scholar 

  167. Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(2), 407–418 (2013)

    Article  Google Scholar 

  168. Abbasi, A.: h-type hybrid centrality measures for weighted networks. Scientometrics 96(2), 633–640 (2013)

    Article  Google Scholar 

  169. Abbasi, A., Hossain, L.: Hybrid centrality measures for binary and weighted networks. In: Complex Networks, pp. 1–7. Springer (2013)

    Google Scholar 

  170. Akanmu, A.A., Wang, F.Z., Yamoah, F.A.: Clique structure and node-weighted centrality measures to predict distribution centre location in the supply chain management. In: Science and Information Conference (SAI), 2014, pp. 100–111. IEEE (2014)

    Google Scholar 

  171. Singh, A., Singh, R.R., Iyengar, S.R.S.: Hybrid centrality measures for service coverage problem. In: International Conference on Computational Data and Social Networks, pp. 81–94. Springer (2019)

    Google Scholar 

  172. Singh, A., Singh, R.R., Iyengar, S.R.S.: Node-weighted centrality: a new way of centrality hybridization. Comput. Soc. Netw. 7(1), 1–33 (2020)

    Google Scholar 

  173. Wiedermann, M., Donges, J.F., Heitzig, J., Kurths, J.: Node-weighted interacting network measures improve the representation of real-world complex systems. EPL (Eur. Lett.) 102(2), 28007 (2013)

    Google Scholar 

  174. Ni, C., Sugimoto, C., Jiang, J.: Degree, closeness, and betweenness: application of group centrality measurements to explore macro-disciplinary evolution diachronically. In: Proceedings of ISSI, pp. 1–13 (2011)

    Google Scholar 

  175. Zhao, J., Lui, J.C., Towsley, D., Guan, X.: Measuring and maximizing group closeness centrality over disk-resident graphs. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 689–694 (2014)

    Google Scholar 

  176. Chen, C., Wang, W., Wang, X.: Efficient maximum closeness centrality group identification. In: Australasian Database Conference, pp. 43–55. Springer (2016)

    Google Scholar 

  177. Dolev, S., Elovici, Y., Puzis, R., Zilberman, P.: Incremental deployment of network monitors based on group betweenness centrality. Inf. Process. Lett. 109(20), 1172–1176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  178. Halappanavar, M., Chen, Y., Adolf, R., Haglin, D., Huang, Z., Rice, M.: Towards efficient nx contingency selection using group betweenness centrality. In: 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, pp. 273–282. IEEE (2012)

    Google Scholar 

  179. Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)

    Article  Google Scholar 

  180. Kolaczyk, E.D., Chua, D.B., Barthélemy, M.: Group betweenness and co-betweenness: inter-related notions of coalition centrality. Soc. Netw. 31(3), 190–203 (2009)

    Google Scholar 

  181. Puzis, R., Elovici, Y., Dolev, S.: Fast algorithm for successive computation of group betweenness centrality. Phys. Rev. E 76(5), 056709 (2007)

    Google Scholar 

  182. Qiu, L.Q., Liang, Y.Q., Chen, Z.Y., Fan, J.C.: A new measurement for the importance of nodes in networks. Control Eng. Inf. Syst. 483–486 (2014)

    Google Scholar 

  183. Li-Qing, Q., Yong-Quan, L., Zhuo-Yan, C.: A novel algorithm for detecting local community structure based on hybrid centrality. J. Appl. Sci. 14, 3532–3537 (2014)

    Article  Google Scholar 

  184. Zhang, X.J., Wang, Z.L., Zhang, Z.X.: Finding most vital node in satellite communication network. In: Applied Mechanics and Materials, vol. 635, pp. 1136–1139. Trans Tech Publications Ltd. (2014)

    Google Scholar 

  185. Buechel, B., Buskens, V.: The dynamics of closeness and betweenness. J. Math. Sociol. 37(3), 159–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  186. Qiao, S., Peng, J., Li, H., Li, T., Liu, L., Li, H.: Webrank: a hybrid page scoring approach based on social network analysis. In: Rough Set and Knowledge Technology, pp. 475–482. Springer (2010)

    Google Scholar 

  187. Wang, J., Rong, L., Guo, T.: A new measure of node importance in complex networks with tunable parameters. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM’08, pp. 1–4. IEEE (2008)

    Google Scholar 

  188. Avrachenkov, K., Litvak, N.: The effect of new links on google pagerank. Stoch. Model. 22(2), 319–331 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  189. de Kerchove, C., Ninove, L., Van Dooren, P.: Maximizing pagerank via outlinks. Linear Algebra Appl. 429(5–6), 1254–1276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  190. Olsen, M.: Maximizing pagerank with new backlinks. In: International Conference on Algorithms and Complexity, pp. 37–48. Springer (2010)

    Google Scholar 

  191. Demaine, E.D., Zadimoghaddam, M.: Minimizing the diameter of a network using shortcut edges. In: Scandinavian Workshop on Algorithm Theory, pp. 420–431. Springer (2010)

    Google Scholar 

  192. Perumal, S., Basu, P., Guan, Z.: Minimizing eccentricity in composite networks via constrained edge additions. In: MILCOM 2013-2013 IEEE Military Communications Conference, pp. 1894–1899. IEEE (2013)

    Google Scholar 

  193. Crescenzi, P., d’Angelo, G., Severini, L., Velaj, Y.: Greedily improving our own closeness centrality in a network. ACM Trans. Knowl. Discov. Data (TKDD) 11(1), 1–32 (2016)

    Google Scholar 

  194. Bergamini, E., Crescenzi, P., D’angelo, G., Meyerhenke, H., Severini, L., Velaj, Y.: Improving the betweenness centrality of a node by adding links. J. Exp. Algorithmics (JEA) 23, 1–32 (2018)

    Google Scholar 

  195. D’Angelo, G., Severini, L., Velaj, Y.: On the maximum betweenness improvement problem. Electron. Notes Theor. Comput. Sci. 322, 153–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  196. Shan, L., Yi, Y., Zhang, Z.: Improving information centrality of a node in complex networks by adding edges. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3535–3541 (2018)

    Google Scholar 

  197. D’Angelo, G., Olsen, M., Severini, L.: Coverage centrality maximization in undirected networks. Proc. AAAI Conf. Artif. Intell. 33, 501–508 (2019)

    Google Scholar 

  198. Medya, S., Silva, A., Singh, A., Basu, P., Swami, A.: Group centrality maximization via network design. In: Proceedings of the 2018 SIAM International Conference on Data Mining, pp. 126–134. SIAM (2018)

    Google Scholar 

  199. Angriman, E., van der Grinten, A., Bojchevski, A., Zügner, D., Günnemann, S., Meyerhenke, H.: Group centrality maximization for large-scale graphs. In: 2020 Proceedings of the Twenty-Second Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 56–69. SIAM (2020)

    Google Scholar 

  200. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  201. Yan, E., Ding, Y.: Applying centrality measures to impact analysis: a coauthorship network analysis. J. Am. Soc. Inform. Sci. Technol. 60(10), 2107–2118 (2009)

    Article  Google Scholar 

  202. Ghosh, R., Lerman, K.: Predicting influential users in online social networks. In: SNAKDD Proceedings of KDD Workshop on Social Network Analysis. Citeseer (2010)

    Google Scholar 

  203. Ilyas, M.U., Radha, H.: Identifying influential nodes in online social networks using principal component centrality. In: 2011 IEEE International Conference on Communications (ICC), pp. 1–5. IEEE (2011)

    Google Scholar 

  204. Mehrotra, A., Sarreddy, M., Singh, S.: Detection of fake twitter followers using graph centrality measures. In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pp. 499–504. IEEE (2016)

    Google Scholar 

  205. Riquelme, F., González-Cantergiani, P.: Measuring user influence on twitter: a survey. Inf. Process. Manag. 52(5), 949–975 (2016)

    Article  Google Scholar 

  206. Lohmann, G., Margulies, D.S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., Schloegl, H., Stumvoll, M., Villringer, A., Turner, R.: Eigenvector centrality mapping for analyzing connectivity patterns in fmri data of the human brain. PloS One 5(4), e10232 (2010)

    Google Scholar 

  207. Zinoviev, D.: A social network of russian “kompromat”. arXiv:2009.08631 (2020)

  208. Kim, J., Jeong, D., Choi, D., Park, E.: Exploring public perceptions of renewable energy: evidence from a word network model in social network services. Energ. Strat. Rev. 32, 100552 (2020)

    Google Scholar 

  209. Nurrokhman, N., Purnomo, H.D., Hartomo, K.D.: Utilization of social network analysis (SNA) in knowledge sharing in college. INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi 4(2), 259–271 (2020)

    Google Scholar 

  210. Stelzhammer, P.: Efficient detection of influential users in social recommender systems. Ph.D. thesis, Wien (2020)

    Google Scholar 

  211. Trach, R., Bushuyev, S.: Analysis communication network of construction project participants. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 29 (2020)

    Google Scholar 

  212. Yuan, F.-C.: Intelligent forecasting of inbound tourist arrivals by social networking analysis. Phys. A 558, 124944 (2020)

    Google Scholar 

  213. Neuberger, J.: Centrality and centralisation a social network analysis of the early soviet film industry, 1918–1953. Apparatus. Film, Media Digit. Cult. Cent. East. Eur. (10), (2020)

    Google Scholar 

  214. Nagdive, A.S., Tugnayat, R., Peshkar, A.: Social network analysis of terrorist networks. Int. J. Eng. Adv. Technol. 9(3), 2553–2559 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Ranjan Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R.R. (2022). Centrality Measures: A Tool to Identify Key Actors in Social Networks. In: Biswas, A., Patgiri, R., Biswas, B. (eds) Principles of Social Networking. Smart Innovation, Systems and Technologies, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-16-3398-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3398-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3397-3

  • Online ISBN: 978-981-16-3398-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics