Skip to main content

Anesthesia for Minimally Invasive Neurosurgical Procedures in Children

  • Chapter
  • First Online:
Fundamentals of Pediatric Neuroanesthesia

Abstract

Since the inception of the specialty of neurosurgery, conventional teaching was that “bigger opening is better.” This statement was based on the principle that a larger opening could allow room for the swollen brain to expand adequately, resulting in lower intracranial pressure (ICP) and reducing the potential for retractor-induced ischemia to normal brain tissue. Adverse brain conditions could also be encountered due to inhalational anesthesia, vasodilatory effects of medications used to regulate blood pressure, and awkward patient positioning leading to brain swelling. Imaging techniques were not available during the early years of neurosurgery, and a large craniectomy allowed for easier localization of the lesion, easier control of bleeding, and room to perform resective surgery in cases of refractory brain bulge. Morbidity and mortality of traditional neurosurgery due to large craniotomies and subsequent brain damage during surgery were well-recognized a century ago. Over the last three decades, advancements in technology have eliminated most difficulties encountered by earlier generations of neurosurgeons. Recent imaging modalities provide accuracy within a few millimeters, and stereotactic guidance has increased the accuracy to the submillimeter level. Neuronavigation tools allow the surgeon to map the perfect trajectory to precisely target lesions while causing minimal damage to eloquent areas of the brain. Advanced micro-equipment and endoscopes allow access to deeper tissues with minimal handling of adjacent brain tissues. Advancement in anesthesia techniques and a better understanding of neurophysiology and neuropharmacology have led to improved control over ICP in the perioperative setting. Facilitation of minimally invasive neurosurgery requires preoperative planning with investigations such as computed tomography (CT), magnetic resonance imaging (MRI), and intraoperative aids like neuroendoscope (using small burr hole/craniotomy), neuronavigation (image guidance system), or the use of robotic aided surgery. This chapter details the nunaces of anesthesia for minimally invasive neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teo C. The concept of minimally invasive neurosurgery. Neurosurg Clin N Am. 2010;21(4):583–4.

    Article  PubMed  Google Scholar 

  2. Ormond DR, Hadjipanayis CG. The history of neurosurgery and its relation to the development and refinement of the frontotemporal craniotomy. Neurosurg Focus. 2014;36:E12.

    Article  PubMed  Google Scholar 

  3. Rossolimo GI. Mozgovoi topograf (Brain topographer). Zhurnal Neuropathologii I Psichatrii imeni Korsakova/J Neuropath Psych Korsakow. 1907;7:640–4.

    Google Scholar 

  4. Thomas DG, Kitchen ND. Minimally invasive surgery. Neurosurgery BMJ. 1994;308:126–8.

    CAS  PubMed  Google Scholar 

  5. Grunert P. From the idea to its realization: the evolution of minimally invasive techniques in neurosurgery. Minim Invasive Surg. 2013;2013:171369.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jahangiri FR, Pautler K, Watters K, Anjum SS, Bennett GL. Mapping of the somatosensory cortex. Cureus. 2020;12:e7332.

    PubMed  PubMed Central  Google Scholar 

  7. Kuo BJ, Vissoci JR, Egger JR, et al. Perioperative outcomes for pediatric neurosurgical procedures: analysis of the national surgical quality improvement program-pediatrics. J Neurosurg Pediatr. 2017;19:361–71.

    Article  PubMed  Google Scholar 

  8. Campbell E, Beez T, Todd L. Prospective review of 30-day morbidity and mortality in a paediatric neurosurgical unit. Childs Nerv Syst. 2017;33:483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peretta P, Ragazzi P, Galarza M, et al. Complications and pitfalls of neuroendoscopic surgery in children. J Neurosurg. 2006;105(3 Suppl):187–93.

    PubMed  Google Scholar 

  10. Miwa T, Hayashi N, Endo S, Ohira T. Neuroendoscopic biopsy and the treatment of tumor-associated hydrocephalus of the ventricular and paraventricular region in pediatric patients: a nationwide study in Japan. Neurosurg Rev. 2015;38:693–704.

    Article  PubMed  Google Scholar 

  11. Johnson JO. Anesthesia for minimally invasive neurosurgery. Anesthesiol Clin North Am. 2002;20:361–75.

    Article  PubMed  Google Scholar 

  12. Choudhri O, Feroze AH, Nathan J, Cheshier S, Guzman R. Ventricular endoscopy in the pediatric population: review of indications. Childs Nerv Syst. 2014;30:1625–43.

    Article  PubMed  Google Scholar 

  13. Han RH, Nguyen DC, Bruck BS, et al. Characterization of complications associated with open and endoscopic craniosynostosis surgery at a single institution. J Neurosurg Pediatr. 2016;17:361–70.

    Article  PubMed  Google Scholar 

  14. Thompson DR, Zurakowski D, Haberkern CM, et al. Endoscopic versus open repair for craniosynostosis in infants using propensity score matching to compare outcomes: a multi center study from the Pediatric Craniofacial Collaborative Group. Anesth Analg. 2018;126:968–75.

    Article  PubMed  Google Scholar 

  15. Fàbregas N, Craen RA. Anaesthesia for endoscopic neurosurgical procedures. Curr Opin Anaesthesiol. 2010;23:568–75.

    Article  PubMed  Google Scholar 

  16. Nishihara T, Morita A, Teraoka A, Kirino T. Endoscopy-guided removal of spontaneous intracerebral hemorrhage: comparison with computer tomography-guided stereotactic evacuation. Childs Nerv Syst. 2007;23:677–83.

    Google Scholar 

  17. Locatelli D, Massimi L, Rigante M, et al. Endoscopic endonasal transsphenoidal surgery for sellar tumors in children. Int J Pediatr Otorhinolaryngol. 2010;74:1298–302.

    Article  PubMed  Google Scholar 

  18. Makary CA, Zalzal HG, Ramadan J, Ramadan HH. Endoscopic endonasal CSF rhinorrhoea repair in children: Systematic review with meta-analysis. Int J Pediatr Otorhinolaryngol. 2020;134:110044.

    Google Scholar 

  19. Di Rocco F, Couloigner V, Dastoli P, Sainte-Rose C, Zerah M, Roger G. Treatment of anterior skull base defects by a trans nasal endoscopic approach in children. J Neurosurg Pediatr. 2010;6:459–63.

    Google Scholar 

  20. Chen M, Xia N, Dong Q, et al. The application of 3D technology combined with image navigation in nasal skull base surgery. J Craniofac Surg. 2020;10.1097/SCS.0000000000006913.

    Google Scholar 

  21. Fujimoto A, Okanishi T, Kanai S, Sato K, Nishimura M, Enoki H. Real-time three-dimensional (3D) visualization of fusion image for accurate subdural electrodes placement of epilepsy surgery. J Clin Neurosci. 2017;44:330–34.

    Google Scholar 

  22. Khan NR, De Cuypere M, Vaughn BN, Klimo P. Image guidance for ventricular shunt surgery: an analysis of ventricular size and proximal revision rates. Neurosurgery. 2019;84:624–35.

    Google Scholar 

  23. Miller BA, Salehi A, Limbrick DD Jr, Smyth MD. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr. 2017;20:364–70.

    Article  PubMed  Google Scholar 

  24. Fady Girgis, Eric Ovruchesky, Jeffrey Kennedy, Masud Seyal, Kiarash Shahlaie, Ignacio Saez. Superior accuracy and precision of SEEG electrode insertion with frame-based vs. frameless stereotaxy methods. Acta Neurochirurgica. 2020;162(10):2527–32

    Google Scholar 

  25. Kapoor I, Rath GP. Robotized surgical assistant in neurosurgery: anaesthetic implications! J Neuroanaesthesiol Crit Care. 2016;3:151–2.

    Article  Google Scholar 

  26. Al-Sayyad MJ, Crawford AH, Wolf RK. Early experiences with video-assisted thoracoscopic surgery: our first 70 cases. Spine (Phila Pa 1976). 2004;29:1945–52.

    Google Scholar 

  27. Wiggins GC, Shaffrey CI, Abel MF, Menezes AH. Pediatric spinal deformities. Neurosurg Focus. 2003;14:e3.

    Article  PubMed  Google Scholar 

  28. Lavelle W, Carl A, Lavelle ED, Khaleel MA. Vertebroplasty and kyphoplasty. Anesthesiol Clin. 2007;25:913–28.

    Article  PubMed  Google Scholar 

  29. Montejo JD, Camara-Quintana JQ, Duran D, et al. Tubular approach to minimally invasive microdiscectomy for pediatric lumbar disc herniation. J Neurosurg Pediatr. 2018;21:449–55.

    Google Scholar 

  30. Shim KW, Park EK, Kim DS, Choi JU. Neuroendoscopy: current and Future Perspectives. J Korean Neurosurg Soc. 2017;60:322–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moorthy RK, Rajshekhar V. Endoscopic third ventriculostomy for hydrocephalus: a review of indications, outcomes, and complications. Neurol India. 2011;59:848–54.

    Article  PubMed  Google Scholar 

  32. Lim J, Tang AR, Liles C, et al. The cost of hydrocephalus: a cost-effectiveness model for evaluating surgical techniques. J Neurosurg Pediatr. 2018;23:109–18.

    Article  PubMed  Google Scholar 

  33. Yadav YR, Bajaj J, Parihar V, Ratre S, Pateriya A. Practical aspects of neuroendoscopic techniques and complication avoidance: a systematic review. Turk Neurosurg. 2018;28:329–40.

    PubMed  Google Scholar 

  34. Kulkarni AV, Riva-Cambrin J, Holubkov R, Browd SR, Cochrane DD, Drake JM, et al. Endoscopic third ventriculostomy in children: prospective, multi center results from the Hydrocephalus Clinical Research Network. J Neurosurg Pediatr. 2016;18:423–9.

    Article  PubMed  Google Scholar 

  35. Kulkarni AV, Drake JM, Mallucci CL, Sgouros S, Roth J, Constantini S, Canadian Pediatric Neurosurgery Study Group. Endoscopic third ventriculostomy in the treatment of childhood hydrocephalus. J Pediatr. 2009;155:254–9.e1.

    Article  PubMed  Google Scholar 

  36. Ambesh SP, Kumar R. Neuroendoscopic procedures: anesthetic considerations for a growing trend—a review. J Neurosurg Anesthesiol. 2000;12:262–70.

    Article  CAS  PubMed  Google Scholar 

  37. Haldar R, Singh Bajwa SJ. Potential Neuroendoscopic Complications: an Anaesthesiologist’s Perspective. Asian J Neurosurg. 2019;14:621–5.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Salvador L, Valero R, Carrero E, et al. Cerebrospinal fluid composition modifications after neuroendoscopic procedures. Minim Invasive Neurosurg. 2007;50:51–5.

    Article  CAS  PubMed  Google Scholar 

  39. Uchida K, Yamada M, Hayashi T, Mine Y, Kawase T. Possible harmful effects on central nervous system cells in the use of physiological saline as an irrigant during neurosurgical procedures. Surg Neurol. 2004;62:96–105.

    Article  PubMed  Google Scholar 

  40. Kazim SF, Enam SA, Shamim MS. Possible detrimental effects of neurosurgical irrigation fluids on neural tissue: an evidence-based analysis of various irrigants used in contemporary neurosurgical practice. Int J Surg. 2010;8:586–90.

    Article  PubMed  Google Scholar 

  41. Cinalli G, Spennato P, Ruggiero C, Aliberti F, Trischitta V, Buonocore MC, et al. Complications following endoscopic intracranial procedures in children. Childs Nerv Syst. 2007;23:633–44.

    Article  PubMed  Google Scholar 

  42. Singh GP, Prabhakar H, Bithal PK, Dash HH. A retrospective analysis of perioperative complications during intracranial neuroendoscopic procedures: our institutional experience. Neurol India. 2011;59:874–8.

    Article  PubMed  Google Scholar 

  43. Ganjoo P, Sethi S, Tandon MS, Chawla R, Singh D. Incidence and pattern of intraoperative hemodynamic response to endoscopic third ventriculostomy. Neurol India. 2009;57:162–5.

    Article  CAS  PubMed  Google Scholar 

  44. Kalmar AF, Van Aken J, Caemaert J, Mortier EP, Struys MM. Value of Cushing reflex as warning sign for brain ischaemia during neuroendoscopy. Br J Anaesth. 2005;94:791–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kalmar AF, De Ley G, Van Den Broecke C, et al. Influence of an increased intracranial pressure on cerebral and systemic haemodynamics during endoscopic neurosurgery: an animal model. Br J Anaesth. 2009;102:361–8.

    Article  CAS  PubMed  Google Scholar 

  46. El-Dawlatly AA. Blood biochemistry following endoscopic third ventriculostomy. Minim Invasive Neurosurg. 2004;47:47–8.

    Article  CAS  PubMed  Google Scholar 

  47. Anandh B, Madhusudan Reddy KR, Mohanty A, Umamaheswara Rao GS, Chandramouli BA. Intraoperative bradycardia and postoperative hyperkalemia in patients undergoing endoscopic third ventriculostomy. Minim Invasive Neurosurg. 2002;45:154–7.

    Article  CAS  PubMed  Google Scholar 

  48. Derbent A, Erşahin Y, Yurtseven T, Turhan T. Hemodynamic and electrolyte changes in patients undergoing neuroendoscopic procedures. Childs Nerv Syst. 2006;22:253–7.

    Article  PubMed  Google Scholar 

  49. Fàbregas N, Valero R, Carrero E, et al. Episodic high irrigation pressure during surgical neuroendoscopy may cause intermittent intracranial circulatory insufficiency. J Neurosurg Anesthesiol. 2001;13:152–7.

    Article  PubMed  Google Scholar 

  50. Prabhakar H, Rath GP, Bithal PK, Suri A, Dash H. Variations in cerebral haemodynamics during irrigation phase in neuroendoscopic procedures. Anaesth Intensive Care. 2007;35:209–12.

    Article  CAS  PubMed  Google Scholar 

  51. Bouras T, Sgouros S. Complications of endoscopic third ventriculostomy. J Neurosurg Pediatr. 2011;7:643–9.

    Article  PubMed  Google Scholar 

  52. Schroeder HW, Niendorf WR, Gaab MR. Complications of endoscopic third ventriculostomy. J Neurosurg. 2002;96:1032–40.

    Article  PubMed  Google Scholar 

  53. Bala R, Pandia MP. Venous air embolism during endoscopic third ventriculostomy. Asian J Neurosurg. 2018;13:431–2.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mohanty A, Anandh B, Reddy MS, Sastry KV. Contralateral massive acute subdural collection after endoscopic third ventriculostomy—a case report. Minim Invasive Neurosurg. 1997;40:59–61.

    Article  CAS  PubMed  Google Scholar 

  55. Singha SK, Chatterjee N, Neema PK. Reverse herniation of brain: a less recognized complication in a patient with midline posterior fossa tumor post-endoscopic third ventriculostomy. J Neurosurg Anesthesiol. 2009;21:354–5.

    Article  PubMed  Google Scholar 

  56. Saxena S, Ambesh SP, Saxena HN, Kumar R. Pneumocephalus and convulsions after ventriculoscopy: a potentially catastrophic complication. J Neurosurg Anesthesiol. 1999;11:200–2.

    Article  CAS  PubMed  Google Scholar 

  57. Schulz C, Waldeck S, Mauer UM. Intraoperative image guidance in neurosurgery: development, current indications, and future trends. Radiol Res Pract. 2012;2012:197364.

    PubMed  PubMed Central  Google Scholar 

  58. Edler A. Special anesthetic considerations for stereotactic radiosurgery in children. J Clin Anesth. 2007;19:616–8.

    Article  PubMed  Google Scholar 

  59. Nelson JH, Brackett SL, Oluigbo CO, Reddy SK. Robotic Stereotactic Assistance (ROSA) for pediatric epilepsy: a single-center experience of 23 consecutive cases. Children (Basel). 2020;7:E94.

    Google Scholar 

  60. Girgis F, Ovruchesky E, Kennedy J, Seyal M, Shahlaie K, Saez I. Superior accuracy and precision of SEEG electrode insertion with frame-based vs. frameless stereotaxy methods. Acta Neurochir. 2020;162(10):2527–32.

    Article  PubMed  Google Scholar 

  61. Teichgraeber JF, Baumgartner JE, Waller AL, et al. Microscopic minimally invasive approach to non-syndromic craniosynostosis. J Craniofac Surg. 2009;20:1492–500.

    Article  PubMed  Google Scholar 

  62. Tobias JD, Johnson JO, Jimenez DF, Barone CM, McBride DS Jr. Venous air embolism during endoscopic strip craniectomy for repair of craniosynostosis in infants. Anesthesiology. 2001;95:340–2.

    Article  CAS  PubMed  Google Scholar 

  63. Jimenez DF, Barone CM. Endoscopic craniectomy for early surgical correction of sagittal craniosynostosis. J Neurosurg. 1998;88:77–81.

    Article  CAS  PubMed  Google Scholar 

  64. Arko L 4th, Swanson JW, Fierst TM, et al. Spring-mediated sagittal craniosynostosis treatment at the Children’s Hospital of Philadelphia: technical notes and literature review. Neurosurg Focus. 2015;38:E7.

    Article  PubMed  Google Scholar 

  65. Taylor JA, Maugans TA. Comparison of spring-mediated cranioplasty to minimally invasive strip craniectomy and barrel staving for early treatment of sagittal craniosynostosis. J Craniofac Surg. 2011;22:1225–9.

    Article  PubMed  Google Scholar 

  66. Thompson DR, Zurakowski D, Haberkern CM, et al. Endoscopic Versus open repair for craniosynostosis in infants using propensity score matching to compare outcomes: a multicenter study from the Pediatric Craniofacial Collaborative Group. Anesth Analg. 2018;126:968–75.

    Article  PubMed  Google Scholar 

  67. Judy BF, Swanson JW, Yang W, Storm PB, Bartlett SP, Taylor JA, Heuer GG, Lang SS. Intraoperative intracranial pressure monitoring in the pediatric craniosynostosis population. J Neurosurg Pediatr. 2018;22:475–80.

    Article  PubMed  Google Scholar 

  68. Goobie SM, Cladis FP, Glover CD, et al. Safety of antifibrinolytics in cranial vault reconstructive surgery: a report from the pediatric Craniofacial Collaborative Group. Paediatr Anaesth. 2017;27:670.

    Article  Google Scholar 

  69. Goobie SM, Cladis FP, Glover CD, et al. Safety of antifibrinolytics in cranial vault reconstructive surgery: a report from the Pediatric Craniofacial Collaborative Group. Paediatr Anaesth. 2017;27:271–81.

    Article  PubMed  Google Scholar 

  70. Riordan CP, Zurakowski D, Meier PM, et al. Minimally invasive endoscopic surgery for infantile craniosynostosis: a longitudinal cohort study. J Pediatr. 2020;216:142–9.e2.

    Article  PubMed  Google Scholar 

  71. Bonfield CM, Basem J, Cochrane DD, Singhal A, Steinbok P. Examining the need for routine intensive care admission after surgical repair of nonsyndromic craniosynostosis: a preliminary analysis. J Neurosurg Pediatr. 2018;22:616–9.

    Article  PubMed  Google Scholar 

  72. Rosemberg S, Fujiwara D. Epidemiology of pediatric tumors of the nervous system according to the WHO 2000 classification: a report of 1195 cases from a single institution. Childs Nerv Syst. 2005;21:940–4.

    Article  PubMed  Google Scholar 

  73. Villwock JA, Villwock MR, Goyal P, Deshaies EM. Current trends in surgical approach and outcomes following pituitary tumor resection. Laryngoscope. 2015;125:1307–12.

    Article  PubMed  Google Scholar 

  74. Kamio Y, Sakai N, Sameshima T, Takahashi G, Koizumi S, Sugiyama K, Namba H. Usefulness of intraoperative monitoring of visual evoked potentials in transsphenoidal surgery. Neurol Med Chir (Tokyo). 2014;54(8):606–11.

    Article  Google Scholar 

  75. Rigante M, Massimi L, Parrilla C, et al. Endoscopic transsphenoidal approach versus microscopic approach in children. Int J Pediatr Otorhinolaryngol. 2011;75:1132–6.

    Article  PubMed  Google Scholar 

  76. Sood S, Marupudi NI, Asano E, Haridas A, Ham SD. Endoscopic corpus callosotomy and hemispherotomy. J Neurosurg Pediatr. 2015;16:681–6.

    Article  PubMed  Google Scholar 

  77. Chibbaro S, Cebula H, Scholly J, et al. Pure endoscopic management of epileptogenic hypothalamic hamartomas. Neurosurg Rev. 2017;40:647–53.

    Article  CAS  PubMed  Google Scholar 

  78. Lipsman N, Ellis M, Lozano AM. Current and future indications for deep brain stimulation in pediatric populations. Neurosurg Focus. 2010;29:E2.

    Article  PubMed  Google Scholar 

  79. Venkatraghavan L, Rakhman E, Krishna V, Sammartino F, Manninen P, Hutchison W. The effect of general anesthesia on the microelectrode recordings from pallidal neurons in patients with dystonia. J Neurosurg Anesthesiol. 2016;28:256–61.

    Article  PubMed  Google Scholar 

  80. Hutchison WD, Lang AE, Dostrovsky JO, Lozano AM. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol. 2003;53:480–8.

    Article  PubMed  Google Scholar 

  81. Lin YS, Liu KD, Chang C, Yang HZ, Tsou MY, Chu YC. Inhibitory concentration of propofol in combination with dexmedetomidine during microelectrode recording for deep brain stimulator insertion surgeries under general anesthesia. J Chin Med Assoc. 2020;83:188–93.

    Article  CAS  PubMed  Google Scholar 

  82. Friedlander AH, Mahler M, Norman KM, Ettinger RL. Parkinson disease: systemic and orofacial manifestations, medical and dental management. J Am Dent Assoc. 2009;140:658–69.

    Article  PubMed  Google Scholar 

  83. Yaszay B, Bartley CE, Sponseller PD, et al. Major complications following surgical correction of spine deformity in 257 patients with cerebral. Spine Deform. 2020:1–8.

    Google Scholar 

  84. Ozhan MO, Bakircioglu S, Bekmez S, Olgun ZD, Süzer A, Demirkiran HG, Yazici M. Improving safety and efficacy in the surgical management of low-tone neuromuscular scoliosis: integrated approach with a 2-attending surgeon operative team and modified anesthesia protocol. J Pediatr Orthop. 2021;41(1):e1–6.

    Article  PubMed  Google Scholar 

  85. Menger R, Hefner MI, Savardekar AR, Nanda A, Sin A. Minimally invasive spine surgery in the pediatric and adolescent population: a case series. Surg Neurol Int. 2018;9:116.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kamson S, Trescot AM, Sampson PD, Zhang Y. Full-endoscopic assisted lumbar decompressive surgery performed in an outpatient, ambulatory facility: report of 5 years of complications and risk factors. Pain Physician. 2017;20:E221–31.

    Article  PubMed  Google Scholar 

  87. Yaman O, Dalbayrak S. Idiopathic scoliosis. Turk Neurosurg. 2014;24:646–57.

    PubMed  Google Scholar 

  88. Soundararajan N, Cunliffe M. Anaesthesia for spinal surgery in children. Br J Anaesth. 2007;99:86–94.

    Article  CAS  PubMed  Google Scholar 

  89. Gavaret M, Trébuchon A, Aubert S, Jacopin S, Blondel B, Glard Y, Jouve JL, Bollini G. Intraoperative monitoring in pediatric orthopedic spinal surgery: three hundred consecutive monitoring cases of which 10% of patients were younger than 4 years of age. Spine (Phila Pa 1976). 2011;36:1855–63.

    Article  Google Scholar 

  90. Cheh G, Lenke LG, Padberg AM, Kim YJ, Daubs MD, Kuhns C, Stobbs G, Hensley M. Loss of spinal cord monitoring signals in children during thoracic kyphosis correction with spinal osteotomy: why does it occur and what should you do? Spine (Phila Pa 1976). 2008;33:1093–9.

    Article  Google Scholar 

  91. Reames DL, Smith JS, Fu KM, Polly DW Jr, Ames CP, Berven SH, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine (Phila Pa 1976). 2011;36:1484–91.

    Article  Google Scholar 

  92. Kokoska ER, Gabriel KR, Silen ML. Minimally invasive anterior spinal exposure and release in children with scoliosis. JSLS. 1998;2:255–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Polis B, Krawczyk J, Polis L, Nowosławska E. Percutaneous extra pedicular vertebroplasty with expandable intravertebral implant in compression vertebral body fracture in pediatric patient-technical note. Childs Nerv Syst. 2016;32:2225–31.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Childers JC Jr. Cardiovascular collapse and death during vertebroplasty. Radiology. 2003;228:902–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

 Nil.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manikandan, S., Nair, P. (2021). Anesthesia for Minimally Invasive Neurosurgical Procedures in Children. In: Rath, G.P. (eds) Fundamentals of Pediatric Neuroanesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-16-3376-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3376-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3375-1

  • Online ISBN: 978-981-16-3376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics