Skip to main content

Developmental Anatomy and Physiology of the Central Nervous System in Children

  • Chapter
  • First Online:
Fundamentals of Pediatric Neuroanesthesia

Abstract

The pediatric age group includes a wide spectrum ranging from neonates, infants to adolescents, each group having unique physiology to understand. Due to the anatomical, physiological, and pathological differences, children present as a heterogeneous group, especially during the first 8 years of life. The nervous system of children is profoundly different during the various stages of childhood and from adults. The central nervous system (CNS) is incompletely developed at birth and continues to grow and mature till the second year of life. The proportion of cerebral blood flow is highest in children between 1 and 3 years, about 40–50% of the cardiac output, increasing their vulnerability to cerebral ischemia during periods of systemic hypotension. Though cerebral autoregulation and CO2 reactivity are preserved even in preterm and term neonates, their immature neurons are extremely vulnerable to adverse events like sudden physiological perturbations and the influences of toxic substances. This warrants the need to maintain homeostasis as closely as possible and the institution of neuroprotective strategies and treatment. Sound knowledge of the unique neurodevelopmental events and neurophysiological principles applicable to the pediatric population is paramount for the safe and effective perioperative care of infants and children at risk for neurological injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishra S. Systems-based embryology- central nervous system. In: Mishra S, editor. Langman’s Medical Embryology (South Asian Edition). New Delhi: Wolters Kluwer Health (India); 2019. p. 321–59.

    Google Scholar 

  2. Bhuiyan PS, Rajgopal L, Shyamkishore K. Introduction to central nervous system. In: Bhuiyan PS, Rajgopal L, Shyamkishore K, editors. Inderbir Singh’s text book of human neuroanatomy. 10th ed. New Delhi: Jaypee Brothers Health Sciences Publishers; 2018. p. 1–17.

    Google Scholar 

  3. Quinonez Z, Easley RB, Bissonnette B, Brady KM. Developmental physiology of the central nervous system. In: Andropoulos DB, Gregory GA, editors. Gregory’s paediatric anesthesia. 6th ed. Hoboken, NJ: Wiley Blackwell; 2020. p. 143–63.

    Chapter  Google Scholar 

  4. Gilbert-Barness E. Teratogenic Causes of Malformations. Ann Clin Lab Sci. 2010;40(2):99–114.

    CAS  PubMed  Google Scholar 

  5. O’Dell MC, Cassady C, Logsdon G, Varich L. Cinegraphic versus combined static and cinegraphic imaging for initial cranial ultrasound screening in premature infants. Pediatr Radiol. 2015;45(11):1706–11.

    Article  PubMed  Google Scholar 

  6. Parodi A, Rossi A, Severino M, et al. Accuracy of ultrasound in assessing cerebellar haemorrhages in very low birthweight babies. Arch Dis Child Fetal Neonatal Ed. 2015;100:F289–92.

    Article  PubMed  Google Scholar 

  7. Krabbe-Hartkamp MJ, van der Grond J, de Leeuw FE, de Groot JC, Algra A, Hillen B, Breteler MM, Mali WP. Circle of Willis: morphologic variation on three-dimensional time-of-flight MR angiograms. Radiology. 1998;207(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  8. Chiron C, Raynaud C, Maziere B, et al. Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med. 1992;33:696–703.

    CAS  PubMed  Google Scholar 

  9. Mackersie A. Pediatric neuroanesthesia. Balliere’s Clin Anaesthesiol. 1999;13:593–604.

    Google Scholar 

  10. Vutskits L. Cerebral blood flow in the neonates. Paediatr Anaesth. 2014:22–9.

    Google Scholar 

  11. Kochanek PM, Tasker RC, Bell MJ, Adelson PD, Carney N, Vavilala MS, et al. Management of Pediatric Severe Traumatic Brain Injury: 2019 consensus and guidelines-Based algorithm for first and second tier therapies. Pediatr Crit Care Med. 2019;20(3):269–79.

    Article  PubMed  Google Scholar 

  12. Wyatt JS, Cope M, Delpy DT, et al. Qualification of cerebral oxygenation and hemodynamics in sick new-born infants by near infrared spectrophotometry. Lancet. 1986;2:1063–6.

    Article  CAS  PubMed  Google Scholar 

  13. Gregory G, Ong B, Tweed W, et al. Hyperventilation restores autoregulation in the cerebral circulation in the neonate. Anesthesiology. 1983;59:427.

    Google Scholar 

  14. Severinghaus JW, Lassen N. Step hypocapnia to separate arterial from tissue PCO2 in the regulation of cerebral blood flow. Circ Res. 1967;20:272–8.

    Article  CAS  PubMed  Google Scholar 

  15. Raichle ME, Posner JB, Plum F. Cerebral blood flow during and after hyperventilation. Arch Neurol. 1970;23(5):394–403.

    Article  CAS  PubMed  Google Scholar 

  16. Karsli C, Luginbuehl I, Farrar M, Bissonnette B. Cerebrovascular carbon dioxide reactivity in children anaesthetized with propofol. Paediatr Anaesth. 2003;13:26–31.

    Article  PubMed  Google Scholar 

  17. Leon JE, Bissonnette B. Cerebrovascular responses to carbondioxide in children anaesthetized with halothane and isoflurane. Can J Anaesth. 1991;38:817–25.

    Article  CAS  PubMed  Google Scholar 

  18. Rowney DA, Fairgrieve R, Bissonnette B. Cerebrovascular carbon dioxide reactivity in children anaesthetized with sevoflurane. Br J Anaesth. 2002;88:357–61.

    Article  CAS  PubMed  Google Scholar 

  19. Brenet O, Granry JC, Poirier N, Le Gall R. The effect of desflurane on cerebral blood flow velocity and cerebrovascular reactivity to CO2 in children [in French]. Ann Fr Anesth Reanim. 1998;17:227–33.

    Article  CAS  PubMed  Google Scholar 

  20. Kochanek PM, Tasker RC, Carney N, et al. Guidelines for the management of pediatric severe traumatic brain injury, third edition: update of the brain trauma foundation guidelines, executive summary. Neurosurgery. 2019;84(6):1169–78.

    Article  PubMed  Google Scholar 

  21. Nemoto EM, Klementavicius R, Melick JA, Yonas H. Suppression of cerebral metabolic rate for oxygen (CMRO2) by mild hypothermia compared with thiopental. J Neurosurg Anesthesiol. 1996;8(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  22. Klementavicius R, Nemoto EM, Yonas H. The Q10 ratio for basal cerebral metabolic rate for oxygen in rats. J Neurosurg. 1996;85(3):482–7.

    Article  CAS  PubMed  Google Scholar 

  23. Vavilala MS, Kincaid MS, Muangman SL, Suz P, Rozet I, Lam AM. Gender differences in cerebral blood flow velocity and autoregulation between the anterior and posterior circulations in healthy children. Pediatr Res. 2005;58:574–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tontisirin N, Muangman SL, Suz P, et al. Early childhood gender differences in anterior and posterior cerebral blood flow velocity and autoregulation. Pediatrics. 2007;119:610–5.

    Article  Google Scholar 

  25. Kennedy C, Sokoloff L. An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal values for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest. 1957;36:1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith AL, Wollman H. Cerebral blood flow and metabolism: effects of anesthetic drugs and techniques. Anesthesiology. 1972;36(4):378–400.

    Article  CAS  PubMed  Google Scholar 

  27. Wintermark M, Lepori D, Cotting J, et al. Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography. Pediatrics. 2004;113:1642–52.

    Article  PubMed  Google Scholar 

  28. Ogawa A, Sakura P, Kayama Y, et al. Regional cerebral blood flow with age: changes in rCBF in childhood. Neurol Res. 1989;11:173.

    Article  CAS  PubMed  Google Scholar 

  29. Bode H. Pediatric applications of transcranial Doppler sonography. Vienna, NY: Springer-Verlag; 1988. p. 1–144.

    Book  Google Scholar 

  30. Aaslid R, Huber P, Nornes H. Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg. 1984;60:37–41.

    Article  CAS  PubMed  Google Scholar 

  31. Vavilala MS, Newell DW, Junger E, Douville CM, Aaslid R, Rivara FP, Lam AM. Dynamic cerebral autoregulation in healthy adolescents. Acta Anaesthesiol Scand. 2002;46:393–7.

    Article  CAS  PubMed  Google Scholar 

  32. Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke. 2002;33:72–7.

    Article  PubMed  Google Scholar 

  33. Martin PJ, Evans DH, Naylor AR. Measurement of blood flow velocity in the basal cerebral circulation: advantages of transcranial color-coded sonography over conventional transcranial Doppler. J Clin Ultrasound. 1995;23:21–6.

    Article  CAS  PubMed  Google Scholar 

  34. Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc Natl Acad Sci U S A. 1990;87(16):6082–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lou HC, Edvinsson L, MacKenzie ET. The concept of coupling blood flow to brain function: revision required? Ann Neurol. 1987;22(3):289–97.

    Article  CAS  PubMed  Google Scholar 

  36. Vavilala MS, Lee LA, Lam AM. Cerebral blood flow and vascular physiology. Anesthesiol Clin North Am. 2002;20:247–64.

    Article  PubMed  Google Scholar 

  37. Settergren G, Lindblad BS, Persson B. Cerebral blood flow and exchange of oxygen, glucose, ketone bodies, lactate, pyruvate and amino acids in infants. Acta Paediatr Scand. 1976;65:343–53.

    Article  CAS  PubMed  Google Scholar 

  38. Settergren G, Lindblad BS, Persson B. Cerebral blood flow and exchange of oxygen, glucose ketone bodies, lactate, pyruvate and amino acids in anesthetized children. Acta Paediatr Scand. 1980;69:457–65.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi T, Shirane R, Sato S, Yoshimoto T. Developmental changes of cerebral blood flow and oxygen metabolism in children. Am J Neuroradiol. 1999;20:917–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rath GP, Dash HH. Anaesthesia for neurosurgical procedures in paediatric patients. Indian J Anaesth. 2012;56(5):502–10.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pryds O, Greisen G, Lou H, et al. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation. J Pediatr. 1989;115:638–45.

    Article  CAS  PubMed  Google Scholar 

  42. Boylan GB, Young K, Panerai RB, et al. Dynamic cerebral autoregulation in sick new-born infants. Pediatr Res. 2000;48:12–7.

    Article  CAS  PubMed  Google Scholar 

  43. Soul JS, Hammer PE, Tsuji M, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res. 2007;61:467–73.

    Article  PubMed  Google Scholar 

  44. Alderliesten T, Lemmers PM, Smarius JJ, et al. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr. 2013;162:698–704.e2.

    Article  PubMed  Google Scholar 

  45. Williams M, Lee JK. Intraoperative blood pressure and cerebral perfusion: strategies to clarify hemodynamic goals. Pediatr Anesth. 2014;24:657–67.

    Article  Google Scholar 

  46. Brew N, Walker D, Wong FY. Cerebral vascular regulation and brain injury in preterm infants. Am J Physiol Regul Integr Comp Physiol. 2014;306(11):R773–86.

    Article  CAS  PubMed  Google Scholar 

  47. Vavilala MS, Lee LA, Lee M, Graham A, Visco E, Lam AM. Cerebral autoregulation in children during sevoflurane anesthesia. Br J Anaesth. 2003;90:636–41.

    Article  CAS  PubMed  Google Scholar 

  48. Vavilala MS, Lee LA, Lam AM. The lower limit of cerebral autoregulation in children during sevoflurane anesthesia. J Neurosurg Anesthesiol. 2003;15:307–12.

    Article  PubMed  Google Scholar 

  49. Bakker SL, de Leeuw FE, den Heijer T, Koudstaal PJ, Hofman A, Breteler MM. Cerebral hemodynamics in the elderly: the Rotterdam study. Neuroepidemiology. 2004;23:178–84.

    Article  PubMed  Google Scholar 

  50. Cutler RW, Spertell RB. Cerebrospinal fluid: a selective review. Ann Neurol. 1982;11(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Chadwick SL, Wilson JW, Levin JE, Martin JM. Cerebrospinal fluid characteristics of infants who present to the emergency department with fever: establishing normal values by week of age. Pediatr Infect Dis J. 2011;30(4):e63–7.

    Article  PubMed  Google Scholar 

  52. Regeniter A, Kuhle J, Mehling M, et al. A modern approach to CSF analysis: pathophysiology, clinical application, proof of concept and laboratory reporting. Clin Neurol Neurosurg. 2009;111(4):313–8.

    Article  PubMed  Google Scholar 

  53. Benarroch EE. Blood-brain barrier: recent developments and clinical correlations. Neurology. 2012;78(16):1268–76.

    Article  PubMed  Google Scholar 

  54. Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, et al. Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rubin RC, Henderson ES, Ommaya AK, et al. The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg. 1966;25:430.

    Article  CAS  PubMed  Google Scholar 

  57. Welch K. The intracranial pressure in infants. J Neurosurg. 1980;52:693–9.

    Article  CAS  PubMed  Google Scholar 

  58. Shapiro K, Marmarou A. Mechanism of intracranial hypertension in children. In: McLauren R, Siegel G, Agrano BW, et al., editors. Pediatric neurosurgery. Philadelphia, PA: WB Saunders; 1989. p. 338–52.

    Google Scholar 

  59. Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marcus ML, Heistad DD, Ehrhardt JC, Abboud FM. Regulation of total and regional spinal cord blood flow. Circ Res. 1977;41(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  61. Hickey R, Albin MS, Bunegin L, Gelineau J. Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain? Stroke. 1986;17(6):1183–9.

    Article  CAS  PubMed  Google Scholar 

  62. Martirosyan NL, Feuerstein JS, Theodore N, Cavalcanti DD, Spetzler RF, Preul MC. Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J Neurosurg Spine. 2011;15(3):238–51.

    Article  PubMed  Google Scholar 

  63. Sun LS, Li G, Miller TL, et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA. 2016;315(21):2312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McCann ME, de Graaff JC, Dorris L, et al. Neurodevelopmental outcome at 5 years of age after general anesthesia or awake-regional anesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial [published correction appears in lancet. 2019 Aug 24;394(10199):638]. Lancet. 2019;393(10172):664–77.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Warner DO, Zaccariello MJ, Katusic SK, et al. Neuropsychological and behavioral outcomes after exposure of Young children to procedures requiring general anesthesia: the Mayo anesthesia safety in kids (MASK) study. Anesthesiology. 2018;129(1):89–105.

    Article  PubMed  Google Scholar 

  66. Holmes GL, Ben-Ari Y. The neurobiology and consequences of epilepsy in the developing brain. Pediatr Res. 2001;49(3):320–5.

    Article  CAS  PubMed  Google Scholar 

  67. Fastenau PS, Johnson CS, Perkins SM, et al. Neuropsychological status at seizure onset in children: risk factors for early cognitive deficits. Neurology. 2009;73(7):526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dunn DW, Johnson CS, Perkins SM, Fastenau PS, Byars AW, DeGrauw TJ, Austin JK. Academic problems in children with seizures: relationships with neuropsychological functioning and family variables during the 3 years after onset. Epilepsy Behav. 2010;19(3):455–61.

    Article  PubMed  Google Scholar 

  69. Holmes GL. Effects of seizures on brain development: lessons from the laboratory. Pediatr Neurol. 2005;33(1):1–11.

    Article  PubMed  Google Scholar 

  70. Andropoulos DB, Brady KM, Easley RB, Fraser CD Jr. Neuroprotection in pediatric cardiac surgery: what is on the horizon? Prog Pediatr Cardiol. 2010;29(2):113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Laptook AR. Use of therapeutic hypothermia for term infants with hypoxic-ischemic encephalopathy. Pediatr Clin N Am. 2009;56:601–16.

    Article  Google Scholar 

  72. Manole MD, Kochanek PM, Fink EL, Clark RS. Postcardiac arrest syndrome: focus on the brain. Curr Opin Pediatr. 2009;21:745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hutchison JS, Ward RE, Lacroix J, Hébert PC, Barnes MA, Bohn DJ, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358:2447–56.

    Article  CAS  PubMed  Google Scholar 

  74. Adelson PD, Wisniewski SR, Beca J, Brown SD, Bell M, Muizelaar JP, et al. Comparison of hypothermia and normothermia after severe traumatic brain injury in children (cool kids): a phase 3, randomised controlled trial. Lancet Neurol. 2013;12:546–53.

    Article  PubMed  Google Scholar 

  75. Steiger HJ, Hänggi D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir. 2007;149:1–10.

    Article  PubMed  Google Scholar 

  76. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8:398–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kharbanda RK, Nielsen TT, Redington AN. Translation of remote ischaemic preconditioning into clinical practice. Lancet. 2009;374:1557–65.

    Article  PubMed  Google Scholar 

  78. McPherson RJ, Juul SE. Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci. 2008;26(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  79. Zhu C, Kang W, Xu F, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic ischemic encephalopathy. Pediatrics. 2009;124:e218–26.

    Article  PubMed  Google Scholar 

  80. Trotter A, Bokelmann B, Sorgo W, et al. Follow-up examination at the age of 15 months of extremely preterm infants after postnatal estradiol and progesterone replacement. J Clin Endocrinol Metab. 2001;86(2):601–3.

    Article  CAS  PubMed  Google Scholar 

  81. Trotter A, Steinmacher J, Kron M, Pohlandt F. Neurodevelopmental follow-up at five years corrected age of extremely low birth weight infants after postnatal replacement of 17beta-estradiol and progesterone. J Clin Endocrinol Metab. 2012;97(3):1041–7.

    Article  CAS  PubMed  Google Scholar 

  82. Schäbitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38:2165–72.

    Article  PubMed  CAS  Google Scholar 

  83. Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM. BDNF protects against spatial memory deficits following neonatal hypoxia-ischemia. Exp Neurol. 2000;166:99–114.

    Article  CAS  PubMed  Google Scholar 

  84. Vawda R, Woodbury J, Covey M, Levison SW, Mehmet H. Stem cell therapies for perinatal brain injuries. Semin Fetal Neonatal Med. 2007;12:259–72.

    Article  PubMed  Google Scholar 

  85. Fan CG, Zhang QJ, Tang FW, Han ZB, Wang GS, Han ZC. Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett. 2005;380:322–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Mohammed Haroon A., Anesthesia Technician, Diploma in Anesthesia and Critical Care Technology, Aniketh Prabhu K, Year 1 Medical Student, CMC Vellore, and Balaji Balasubramanian, CEO, Dot Imagine institute of Art for their artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamani Mariappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajagopalan, V., Mariappan, R. (2021). Developmental Anatomy and Physiology of the Central Nervous System in Children. In: Rath, G.P. (eds) Fundamentals of Pediatric Neuroanesthesia. Springer, Singapore. https://doi.org/10.1007/978-981-16-3376-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3376-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3375-1

  • Online ISBN: 978-981-16-3376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics