Skip to main content

Deep Learning-Based Time Series Forecasting

  • Chapter
  • First Online:
Deep Learning Applications, Volume 3

Abstract

Time series forecasting methods have been widely implemented in various domains across industry and academics. For decision-makers in the forecasting sector, decision processes like planning of facilities, an optimal day-to-day operation within the domain, etc. are complex with several different levels to be considered. These decisions address widely different time horizons and aspects of the system, making it difficult to model. The advent of deep learning in forecasting solved the need for expensive hand-crafted features and deep domain knowledge. This chapter aims at giving a structure to the existing literature for time series forecasting in deep learning. Based on the underlying structures of the technique, such as RNN, CNN, and transformer, we have categorized various deep learning-based time series forecasting techniques and provided a consolidated report. Additionally, we have performed experiments to compare these techniques on four different publicly available datasets. Finally, based on these experiments, we provide an intuitive reasoning behind these performances. We believe that this chapter shall help the researchers in choosing relevant techniques for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, T.G., et al.: Volatility forecasting. Tech. Rep. National Bureau of Economic Research (2005)

    Google Scholar 

  2. Böose, J.H., et al.: Probabilistic demand forecasting at scale. Proc. VLDB Endowment 10(12), 1694–1705 (2017)

    Google Scholar 

  3. Mudelsee, M.: Trend analysis of climate time series: a review of methods. Earth Sci. Rev. 190, 310–322 (2019)

    Google Scholar 

  4. Kalman, R.E.: A new approach to linear filtering and prediction problems. In: (1960)

    Google Scholar 

  5. Gardner, E.S., Jr.: Exponential smoothing: the state of the art. J. Forecasting 4(1), 1–28 (1985)

    Google Scholar 

  6. Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge university press (1990)

    Google Scholar 

  7. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Google Scholar 

  8. Yu, H.F., Rao, N., Dhillon, I.S.: Temporal regularized matrix factorization for high-dimensionaltime series prediction. In: Advances in Neural Information Processing Systems, pp. 847–855 (2016)

    Google Scholar 

  9. Salinas, D., et al.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecasting (2019)

    Google Scholar 

  10. Lai, G., et al.: Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, pp. 95–104 (2018)

    Google Scholar 

  11. Sen, R., Yu, H.F., Dhillon, I.S.: Thinkglobally, act locally: a deep neural network approach to high-dimensional time series forecasting. In: Advances in Neural Information Processing Systems, pp. 4838–4847 (2019)

    Google Scholar 

  12. Gamboa, J.C.B.: Deep learning for time-series analysis (2017). arXiv preprint arXiv:1701.01887

  13. Lim, B., Zohren, S.: Time series forecasting with deep learning: a survey (2020). arXiv preprint arXiv:2004.13408

  14. Rangapuram, S.S., et al.: Deep state space models for time series forecasting. In: Advances in Neural Information Processing Systems, pp. 7785–7794 (2018)

    Google Scholar 

  15. Moghram I., Rahman, S: Analysis and evaluation of five short-term load forecasting techniques. IEEE Trans. Power Syst. 4(4), 1484–1491 (1989)

    Google Scholar 

  16. Barakat, E.H., et al.: Short-term peak demand forecasting in fast developing utility with inherit dynamic load characteristics. I. Application of classical time-series methods. II. Improved modelling of system dynamic load characteristics. IEEE Trans. Power Syst. 5(3), 813–824 (1990)

    Google Scholar 

  17. West, M., Harrison, J.: Bayesian Forecasting and Dynamic Models. Springer Science & Business Media (2013)

    Google Scholar 

  18. Chen, Z., Cichocki, A.: Nonnegative matrix factorization with temporal smoothness and/or spatial decorrelation constraints. In: Laboratory for Advanced Brain Signal Processing, RIKEN, Tech. Rep. 68 (2005)

    Google Scholar 

  19. Rallapalli, S., et al.: Exploiting temporal stability and low-rank structure for localization in mobile networks. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 161–172 (2010)

    Google Scholar 

  20. Roughan, M., et al.: Spatio-temporal compressive sensing and internet traffic matrices (extended version). IEEE/ACM Trans. Networking 20(3), 662–676 (2011)

    Google Scholar 

  21. Smola, A.J., Kondor, R.: Kernels and regularization on graphs”. In: Learning Theory and Kernel Machines. Springer, pp. 144–158 (2003)

    Google Scholar 

  22. Edwards, T., et al.: Traffic trends analysis using neural networks. In: Proceedings of the International Workshop on Applications of Neural Networks to Telecommunications (1997)

    Google Scholar 

  23. Patterson, D.W., Chan, K.H., Tan, C.M.: Time series forecasting with neural nets: a comparative study. In: Proceedings of the International Conference on Neural Network Applictions to Signal Processing, pp. 269–274 (1993)

    Google Scholar 

  24. Bengio, S., Fessant, F., Collobert, D.: A connectionist system for medium-term horizon time series prediction. In: Proceedings of the International Workshop Application Neural Networks to Telecoms, pp. 308–315 (1995)

    Google Scholar 

  25. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 115–143 (2002)

    Google Scholar 

  26. Malhotra, P., et al.: Long short term memory networks for anomaly detection in time series. In: Proceedings. Presses universitaires de Louvain, p. 89 (2015)

    Google Scholar 

  27. Guo, T., et al.: Robust online time series prediction with recurrent neural networks. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 816–825. IEEE (2016)

    Google Scholar 

  28. Hsu, D.: Multi-period time series modeling with sparsity via Bayesian variational inference (2017). arXiv preprint arXiv:1707.00666

  29. Cinar, Y.G., et al.: Time series forecasting using RNNs: an extended attention mechanism to model periods and handle missing values (2017). arXiv preprint arXiv:1703.10089

  30. Bandara, K., Bergmeir, C., Smyl, S: Forecasting across time series databases using recurrent neural networks on groups of similar series: a clustering approach. Expert Syst. Appl. 140, 112896 (2020)

    Google Scholar 

  31. Laptev, N., et al.: Time-series extreme event forecasting with neural networks at uber. In: International Conference on Machine Learning, vol. 34, pp. 1–5 (2017)

    Google Scholar 

  32. Che, Z., et al.: Recurrent neural networks for multi-variate time series with missing values. Sci. Rep. 8 (1), 6085 (2018)

    Google Scholar 

  33. Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks (2015). arXiv preprint arXiv:1506.02078

  34. van der Westhuizen, J., Lasenby, J.: Visualizing LSTM decisions. In: stat1050, p. 23 (2017)

    Google Scholar 

  35. Greff, K., et al.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst. 28(10), 2222–2232 (2016)

    Google Scholar 

  36. Chang, C.H., Rampasek, L., Goldenberg, A.: Dropout feature ranking for deep learning models (2017). arXiv preprint arXiv:1712.08645

  37. Hinton, G.E., et al.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv preprint arXiv:1207.0580

  38. Zhu, L., Laptev, N.: Deep and confident prediction for time series at uber. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 103–110. IEEE (2017)

    Google Scholar 

  39. Caley, J.A., Lawrance, N.R.J., Hollinger, G.A.: Deep networks with confidence bounds for robotic information gathering (2017)

    Google Scholar 

  40. Faloutsos, C., et al.: Forecasting big time series: old and new. Proc. VLDB Endowment 11(12), 2102–2105 (2018)

    Google Scholar 

  41. Alexandrov, A., et al.: GluonTS: probabilistic time series models in Python (2019). arXiv preprint arXiv:1906.05264

  42. Wen, R., et al.: A multi-horizon quantile recurrent forecaster (2017). arXiv preprint arXiv:1711.11053

  43. Oreshkin, B.N., et al.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting (2019). arXiv preprint arXiv:1905.10437

  44. van den Oord, A., et al.: Wavenet: a generative model for raw audio (2016). arXiv preprint arXiv:1609.03499

  45. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  46. Devlin, J., et al.: Bert: pretraining of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805

  47. Radford, A., et al.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  48. Yang, Z., et al.: XLNet: generalized autoregressive pretraining for language understanding (2019. arXiv preprint arXiv:1906.08237

  49. Qin, Y., et al.: A dual-stage attention-based recurrent neural network for time series prediction (2017). arXiv preprint arXiv:1704.02971

  50. Tao, Y., et al.: Hierarchical attention-based recurrent high-way networks for time series prediction (2018). arXiv preprint arXiv:1806.00685

  51. Fan, C., et al.: Multi-horizon time series forecasting with temporal attention learning. In: Proceedings of the 25th ACMSIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2527–2535 (2019)

    Google Scholar 

  52. Cinar, Y.G., et al.: Position-based content attention for time series forecasting with sequence-to-sequence RNNs. In: International Conference on Neural Information Processing, pp. 533–544. Springer (2017)

    Google Scholar 

  53. Shih, S.Y., Sun, F.K., Lee, H.Y.: Temporal pattern attention for multivariate time series forecasting. Mach. Learn. 108(8-9), 1421–1441 (2019)

    Google Scholar 

  54. Huang, S., et al.: DSANet: dual self-attention network for multivariate time series forecasting. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2129–2132 (2019)

    Google Scholar 

  55. Krishnan, R.G., Shalit, U., Sontag, D.: Deep Kalman filters.(2015). arXiv preprint arXiv:1511.05121

  56. Krishnan, R.G., Shalit, U., Sontag, D.: Structured inference networks for nonlinear state space models. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  57. Fraccaro, M., et al.: Sequential neural models with stochastic layers. In: Advances in Neural Information Processing Systems, pp. 2199–2207 (2016)

    Google Scholar 

  58. Fraccaro, M., et al.: A disentangled recognition and nonlinear dynamics model for unsupervised learning. In: Advances in Neural Information Processing Systems, pp. 3601–3610 (2017)

    Google Scholar 

  59. Maddix, D.C., Wang, Y., Smola, A.: Deep factors with gaussian processes for forecasting (2018). arXiv preprint arXiv:1812.00098

  60. Smyl, S., Ranganathan, J., Pasqua, A.: M4 forecasting competition: introducing a new hybrid ES-RNN model. (2018). URL: https://eng.uber.com/m4-forecasting-competition/

  61. Trindade A.: Electricity load diagrams 2011–2014 data set

    Google Scholar 

  62. Cuturi, M.: Fast global alignment kernels. In: Proceedings of the 28th International Conference on Machine Learning(ICML-11), pp. 929–936 (2011)

    Google Scholar 

  63. MOFC: The dataset (2018). URL: https://mofc.unic.ac.cy/the-dataset/

  64. Wani, M.A., Bhat, F.A., Afzal, S., Khan, A.I.: Advances in deep learning

    Google Scholar 

  65. Wani, M.A., Kantardzic, M., Sayed-Mouchaweh, M.: Deep learning applications

    Google Scholar 

  66. Wani, M.A., Khoshgoftaar, T.M., Palade, V.: Deep learning applications, vol. 2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kushagra Agarwal .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 1040 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, K., Dheekollu, L., Dhama, G., Arora, A., Asthana, S., Bhowmik, T. (2022). Deep Learning-Based Time Series Forecasting. In: Wani, M.A., Raj, B., Luo, F., Dou, D. (eds) Deep Learning Applications, Volume 3. Advances in Intelligent Systems and Computing, vol 1395. Springer, Singapore. https://doi.org/10.1007/978-981-16-3357-7_6

Download citation

Publish with us

Policies and ethics