Skip to main content

Comparative Analysis for Optimal Tuning of DC Motor Position Control System

  • Conference paper
  • First Online:
Proceedings of Second Doctoral Symposium on Computational Intelligence

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1374))

  • 1115 Accesses

Abstract

DC motors are an important component and are used in industrial machines and engineering applications. The position control of DC motor is useful in precision control systems. This study aims to present a comparative analysis of different controllers and to tune these controllers using metaheuristic algorithms for DC motor position control. The position control is modeled using its transfer function. In this study, the performance of PID, fractional-PID (F-PID) and PID with filter coefficient Ni (PID-N) has been compared. The controller’s parameters, i.e., Kp, Ki, Kd, Ni, μ, λ have been tuned by using global neighborhood algorithm (GNA) and bat algorithm (BA). The optimization performance of the chosen algorithms is compared using transient response analysis. The results obtained after performing the simulation show that the overall performance of PID-N controller is better compared to the other controllers, and GNA does better overall tuning of controller parameters compared to BA. All simulations were done using MATLAB/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neenu Thomas, D. P. P. (2009). Position control of DC motor using genetic algorithm based PID controller. Proc World Congr Eng 2009

    Google Scholar 

  2. Aamir, M. (2013). On replacing PID controller with ANN controller for DC motor position control. Int J Res Stud Comput, 2, 21–29. https://doi.org/10.5861/ijrsc.2013.236

  3. Moran, M. E. F., & Viera, N. A. P. (2018). Comparative study for DC motor position controllers. In 2017 IEEE 2nd Ecuador Tech Chapters Meet ETCM 2017 2017-Janua:1–6. https://doi.org/10.1109/ETCM.2017.8247475

  4. Flores-Morán, E., Yánez-Pazmiño, W., & Barzola-Monteses, J. (2018). Genetic algorithm and fuzzy self-tuning PID for DC motor position controllers. Proc 2018 19th Int Carpathian Control Conf ICCC 2018, 162–168. https://doi.org/10.1109/CarpathianCC.2018.8399621

  5. Duman, S., Maden, D., & Güvenç, U. (2011). Determination of the PID controller parameters for speed and position control of DC motor using gravitational search algorithm. In ELECO 2011—7th Int Conf Electr Electron Eng.

    Google Scholar 

  6. Dhieb, Y., Yaich, M., Guermazi, A., & Ghariani, M. (2019). PID controller tuning using ant colony optimization for induction motor. J Electr Syst, 15, 133–141.

    Google Scholar 

  7. Manoj Kushwah PAP (2014) Tuning of PID controller for speed control of DC motor using soft computing techniques—A review. Adv Electron Electr Eng, 4.

    Google Scholar 

  8. Allaoua, B., & Mebarki, B. (2012). Intelligent PID DC motor speed control alteration parameters using particle swarm optimization. Artif Intell Resour Control Autom Eng, 3–14. https://doi.org/10.2174/978160805126711201010003

  9. Meshram Rohit, P. M., & Kanojiya G. (2012). Method for speed control of DC Motor. Int Conf Adv Eng Sci Manag, 117–122.

    Google Scholar 

  10. Das, K. R., Das, D., & Das, J. (2016). Optimal tuning of PID controller using GWO algorithm for speed control in DC motor. Int Conf Soft Comput Tech Implementations, ICSCTI, 2015, 108–112. https://doi.org/10.1109/ICSCTI.2015.7489575

    Article  Google Scholar 

  11. Jain, R. V. , & MVA, ASJ. (2016). Tuning of fractional order PID controller using particle swarm optimization technique for DC motor speed control, 006, 6–9

    Google Scholar 

  12. Hekimoglu, B. (2019). Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm. IEEE Access, 7, 38100–38114. https://doi.org/10.1109/ACCESS.2019.2905961

    Article  Google Scholar 

  13. Premkumar, K., & Manikandan, B. V. (2016). Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor. Eng Sci Technol an Int J, 19, 818–840. https://doi.org/10.1016/j.jestch.2015.11.004

    Article  Google Scholar 

  14. Gozde, H., Taplamacioglu, M. C., & Ari, M. (2017). Simulation study for global neighborhood algorithm based optimal automatic voltage regulator (AVR) system. In ICSG 2017—5th Int Istanbul Smart Grids Cities Congr Fair (pp. 46–50). https://doi.org/10.1109/SGCF.2017.7947634

  15. Alazzam A. W. H. (2013). A new optimization algorithm for combinatorial problems. Int J Adv Res Artif Intell, 2, 63–68. https://doi.org/10.14569/ijarai.2013.020510

  16. Yang, X. S. (2010). A new metaheuristic Bat-inspired Algorithm. Stud Comput Intell, 284, 65–74. https://doi.org/10.1007/978-3-642-12538-6_6

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singhal, A., Mittal, D., Roy, R., Dahiya, P. (2022). Comparative Analysis for Optimal Tuning of DC Motor Position Control System. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds) Proceedings of Second Doctoral Symposium on Computational Intelligence . Advances in Intelligent Systems and Computing, vol 1374. Springer, Singapore. https://doi.org/10.1007/978-981-16-3346-1_60

Download citation

Publish with us

Policies and ethics