Skip to main content

Impact of Machine Learning Algorithms on WDM High-Speed Optical Networks

  • Conference paper
  • First Online:
Proceedings of Second Doctoral Symposium on Computational Intelligence

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1374))

Abstract

This paper focuses on comparing the various machine learning (ML) algorithms that can be applicable in wavelength division multiplexing (WDM) optical networks to provide better simulation outcomes. ML, combined with WDM optical networks, helps in network control and resource management that are useful in service provisioning and resource assignment. This paper gives a comprehensive review of machine learning approaches in WDM optical networks concerning support vector machine (SVM), K-nearest neighbour (K-NN), decision tree, random forest and neural networks algorithms. These algorithms’ performances are compared in terms of accuracy and AUC; further, the accuracy and AUC results show an average outcome of 99% and 0.98, respectively. Simulation can be performed on MATLAB and Net2plan tools using different data sets in terms of average accuracy and AUC for WDM optical networks. This research’s future directions can be towards ML utilization to provide optimal routing and wavelength assignment, increasing bandwidth utilization to reduce control overheads, reduce computational complexity, security, fault occurrence and monitoring schemes for WDM optical networks supporting 5G applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, J., Wang, G., Hu, P., Duan, L. Y., & Kot, A. C. (2017). Global context-aware attention LSTM networks for 3D action recognition. In Proceedings—30th IEEE Conference Computer Vision Pattern Recognition, CVPR 2017 (vol. 2017-Janua, pp. 3671–3680). https://doi.org/10.1109/CVPR.2017.391.

  2. Zibar, D., Piels, M., Jones, R., & Schaeffer, C. G. (2015). Machine learning techniques in optical communication. https://doi.org/10.1109/ECOC.2015.7341896.

  3. Tiwari, P., et al. (2018). Detection of subtype blood cells using deep learning. Cognitive Systems Research, 52, 1036–1044. https://doi.org/10.1016/j.cogsys.2018.08.022

    Article  Google Scholar 

  4. Pan, C., Henning, B., Idler, W., Schmalen, L., & Fellow, F. R. K. (2015). Optical nonlinear-phase-noise compensation for a code-aided expectation-maximization algorithm (no. July, pp. 1–8).

    Google Scholar 

  5. Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678. https://doi.org/10.1109/TNN.2005.845141

    Article  Google Scholar 

  6. Song, C., Zhang, M., Huang, X., Zhan, Y., Wang, D., Liu, M. (2018). Machine learning enabling traffic-aware dynamic slicing for 5G optical transport networks. [Online]. Available: https://www.osapublishing.org/oe/viewmedia.cfm?uri=oe-21-12-14859&seq=0.

  7. Macaluso, I., Finn, D., Ozgul, B., & Dasilva, L. A. (2013). Complexity of spectrum activity and benefits of reinforcement learning for dynamic channel selection. IEEE Journal on Selected Areas in Communications, 31(11), 2237–2248. https://doi.org/10.1109/JSAC.2013.131115

    Article  Google Scholar 

  8. Ye, H., Li, G. Y., & Juang, B. H. (2018). power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Communication Letter, 7(1), 114–117. https://doi.org/10.1109/LWC.2017.2757490

    Article  Google Scholar 

  9. T. J. O’Shea, Erpek, T., & Charles Clancy, T. (2017) Deep learning-based MIMO communications. arXiv, pp. 1–9.

    Google Scholar 

  10. Thrane, J., Wass, J., Piels, M., Diniz, J. C. M., Jones, R. T., & Zibar, D. (2017). Machine learning technique for optical performance monitoring from directly detected PDM-QAM signals. Journal of Lightwave Technology, 35(4), 868–875.

    Article  Google Scholar 

  11. Angelou, M., Pointurier, Y., Careglio, D., & Spadaro, S. (2012). Optimized monitor placement for accurate QoT assessment in core optical networks. Journal of Optical Communications and Networking, 4(1), 15–24. [Online]. Available: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-2-670.

  12. Karim, M., & Rahman, R. M. (2013). Decision Tree and Naïve Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing. Journal of Software Engineering and Applications, 06(04), 196–206. https://doi.org/10.4236/jsea.2013.64025

    Article  Google Scholar 

  13. Sartzetakis, I., Christodoulopoulos, K., Tsekrekos, C. P., Syvridis, D., & Varvarigos, E. (2016). Quality of transmission estimation in WDM and elastic optical networks accounting for space-spectrum dependencies. Journal of Optical Communications and Networking, 8(9), 676–688. https://doi.org/10.1364/JOCN.8.000676

    Article  Google Scholar 

  14. Pointurier, Y., Coates, M., & Rabbat, M. (2011). Cross-layer monitoring in transparent optical networks. Journal of Optical Communications and Networking, 3(3), 189–198. https://doi.org/10.1364/JOCN.3.000189

    Article  Google Scholar 

  15. Sambo, N., Pointurier, Y., Cugini, F., Valcarenghi, L., Castoldi, P., & Tomkos, I. (2010). Lightpath establishment assisted by offline QoT estimation in transparent optical networks. Journal of Optical Communications and Networking, 2(11), 928–937. https://doi.org/10.1364/JOCN.2.000928

    Article  Google Scholar 

  16. Barletta, L., Giusti, A., Rottondi, C., & Tornatore, M. (2017). QoT estimation for unestablished lighpaths using machine learning. In 2017 Opt. Fiber Commun. Conf. Exhib. OFC 2017 - Proc., pp. 5–7, 2017, doi: https://doi.org/10.1364/ofc.2017.th1j.1.

  17. Seve, E., Pesic, J., Delezoide, C., Bigo, S., & Pointurier, Y. (2018). Learning process for reducing uncertainties on network parameters and design margins. Journal of Optical Communications and Networking, 10(2), A298–A306. https://doi.org/10.1364/JOCN.10.00A298

    Article  Google Scholar 

  18. Panayiotou, T., Ellinas, G., & Chatzis, S. P. (2016). A data-driven QoT decision approach for multicast connections in metro optical networks. In 2016 International Conference on Optical Network Design and Modeling ONDM 2016, no. Dec 2017, 2016 https://doi.org/10.1109/ONDM.2016.7494074.

  19. Panayiotou, T., Chatzis, S. P., & Ellinas, G. (2017). Performance analysis of a data-driven quality-of-transmission decision approach on a dynamic multicast- capable metro optical network. Journal of Optical Communications and Networking, 9(1), 98–108. https://doi.org/10.1364/JOCN.9.000098

    Article  Google Scholar 

  20. Gu, R., Yang, Z., & Ji, Y. (2020). Machine learning for intelligent optical networks: A comprehensive survey. Journal of Networking Computer Application, 157. https://doi.org/10.1016/j.jnca.2020.102576.

  21. Gao, R., et al. (2020). An overview of ML-based applications for next generation optical networks. Science China Information Sciences, 63(6), 1–16. https://doi.org/10.1007/s11432-020-2874-y

    Article  Google Scholar 

  22. Panayiotou, T., Savva, G., Tomkos, I., & Ellinas, G. (2019). Centralized and distributed machine learning-based QoT estimation for sliceable optical networks. arXiv.

    Google Scholar 

  23. Khan, F. N., Fan, Q., Lu, C., & Lau, A. P. T. (2019). Machine learning methods for optical communication systems and networks. Elsevier Inc.,.

    Google Scholar 

  24. Zhan, K., et al. (2020). Intent defined optical network: Toward artificial intelligence-based optical network automation. In Optics InfoBase Conference Papers (vol. Part F174-, no. June, pp. 1–12, 2020). https://doi.org/10.1364/OFC.2020.T3J.6.

  25. Hindia, M. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On Platform to Enable the Cognitive Radio Over 5G Networks. Wireless Personal Communications, 113(2), 1241–1262. https://doi.org/10.1007/s11277-020-07277-3

    Article  Google Scholar 

  26. Troia, S., Alvizu, R., & Maier, G. (2019). Reinforcement learning for service function chain reconfiguration in NFV-SDN metro-core optical networks. IEEE Access, 7, 167944–167957. https://doi.org/10.1109/ACCESS.2019.2953498

    Article  Google Scholar 

  27. Musumeci, F., et al. (2019). An Overview on Application of Machine Learning Techniques in Optical Networks. IEEE Communication Survey Tutorials, 21(2), 1383–1408. https://doi.org/10.1109/COMST.2018.2880039

    Article  Google Scholar 

  28. Morocho-Cayamcela, M. E., Lee, H., & Lim, W. (2019). Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions. IEEE Access, 7(Sept), 137184–137206. https://doi.org/10.1109/ACCESS.2019.2942390

    Article  Google Scholar 

  29. Toscano, M., Grunwald, F., Richart, M., Baliosian, J., Grampín, E., & Castro, A. (2019). Machine learning aided network slicing. In International Conference on Transparent Optical Networks (ICTON) (Vol. 2019-July, pp. 8–11, 2019). https://doi.org/10.1109/ICTON.2019.8840141.

  30. Casellas, R., et al. (2018). Enabling data analytics and machine learning for 5G services within disaggregated multi-layer transport networks. In International Conference on Transparent Optical Networks (ICTON) (vol. 2018-July, pp. 1–4). https://doi.org/10.1109/ICTON.2018.8473832.

  31. Morais, R. M., & Pedro, J. (2018). Machine learning models for estimating quality of transmission in DWDM networks. Journal of Optical Communications and Networking, 10(10), D84–D99. https://doi.org/10.1364/JOCN.10.000D84

    Article  Google Scholar 

  32. Pelekanou, A., Anastasopoulos, M., Tzanakaki, A., & Simeonidou, D. (2018). Provisioning of 5G services employing machine learning techniques. In 2018 International Conference on Optical Network Design and Modeling (ONDM) 2018—Proceedings (vol. 1, pp. 200–205) https://doi.org/10.23919/ONDM.2018.8396131.

  33. Wang, Y., Zhang, Z., Zhang, S., Cao, S., & Xu, S. (2018). A unified deep learning based polar-LDPC decoder for 5G communication systems. In 2018 10th International Conferences of Wireless Communication Signal Process. WCSP 2018 (pp. 1–6). https://doi.org/10.1109/WCSP.2018.8555891.

  34. Fagbohun, O. O. (2014). Comparative studies on 3G,4G and 5G wireless technology. IOSR Journal Electronics Communication Engineering, 9(2), 133–139. https://doi.org/10.9790/2834-0925133139

    Article  Google Scholar 

  35. Alzubi, O. A., Alzubi, J. A., Alweshah, M., Qiqieh, I., Al-Shami, S., & Ramachandran, M. (2020). An optimal pruning algorithm of classifier ensembles: Dynamic programming approach. Neural Computing and Applications, 32(20), 16091–16107. https://doi.org/10.1007/s00521-020-04761-6

    Article  Google Scholar 

  36. Rottondi, C., Barletta, L., Giusti, A., & Tornatore, M. (2018). Machine-learning method for quality of transmission prediction of unestablished lightpaths. Journal of Optical Communications and Networking, 10(2), A286–A297. https://doi.org/10.1364/JOCN.10.00A286

    Article  Google Scholar 

  37. De Miguel, I., et al. (2013). Cognitive dynamic optical networks. In Optical Fiber Communications Conference and Exposition OFC 2013 (pp. 18–20). https://doi.org/10.1364/ofc.2013.ow1h.1.

  38. Aladin, S., & Tremblay, C. (2018). Cognitive tool for estimating the QoT of new lightpaths. In 2018 Optical Fiber Communications Conference and Exposition OFC 2018— Proceedings (Vol. 3, pp. 1–3, 2018). https://doi.org/10.1364/ofc.2018.m3a.3.

  39. Shahkarami, S., Musumeci, F., Cugini, F., & Tornatore, M. (2018). Machine-learning-based soft-failure detection and identification in optical networks. In Optical InfoBase Conference Papers (Vol. Part F84-O, pp. 37–39). https://doi.org/10.1364/OFC.2018.M3A.5.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rai, S., Garg, A.K. (2022). Impact of Machine Learning Algorithms on WDM High-Speed Optical Networks. In: Gupta, D., Khanna, A., Kansal, V., Fortino, G., Hassanien, A.E. (eds) Proceedings of Second Doctoral Symposium on Computational Intelligence . Advances in Intelligent Systems and Computing, vol 1374. Springer, Singapore. https://doi.org/10.1007/978-981-16-3346-1_52

Download citation

Publish with us

Policies and ethics