Skip to main content

Vibroacoutic Behavior of Finite Composite Sandwich Plates with Foam Core

  • Conference paper
  • First Online:
Modern Mechanics and Applications

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1930 Accesses

Abstract

In this study, based on a modal superposition method and Biot’s theory, an analytical model on vibroacoustic behavior of clamped and simply supported orthotropic rectangular composite sandwich plates with foam core has been derived. Theoretical predictions of sound transmission loss (STL) across finite composite sandwich plates with poroelastic material agree well with the experimental results in most frequency ranges of interest. Basing on the numerical results obtained, the influence of different parameters of the two thin laminated composite sheets and polyurethane foam core layer on STL of a sandwich plate is quantitatively evaluated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biot, M.A.: Theory of propagation of elastic waves in a uid-saturated porous solid I. low-frequency range. II. higher frequency range. J. Acoust. Soc. Am. 28(2), 168–191 (1956)

    Google Scholar 

  2. Bolton, J.S., Green, E.R.: Normal incidence sound transmission through double-panel systems lined with relatively stiff, partially reticulated polyurethane foam. Appl. Acoust. 39, 23–51 (1993)

    Article  Google Scholar 

  3. Bolton, J.S., Shiau, N.M., Kang, Y.J.: Sound transmission through multi-panel structures lined with elastic porous materials. J. Sound Vib. 191(3), 317–347 (1996)

    Article  Google Scholar 

  4. Panneton, R., Atalla, N.: Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. J. Acoust. Soc. Am. 100(1), 346–354 (1996)

    Article  Google Scholar 

  5. Kropp, W., Rebillard, E.: On the air-borne sound insulation of double wall constructions. Acta Acust. 85(5), 707–720 (1999)

    Google Scholar 

  6. Sgard, F.C., Atalla, N., Nicolas, J.: A numerical model for the low frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings. J. Acoust. Soc. Am. 108(6), 2865–2872 (2000)

    Article  Google Scholar 

  7. Lee, C., Kondo, K.: Noise transmission loss of sandwich plates with viscoelastic core. American Institute of Aeronautics & Asreonautics AIAA-99–1458, pp. 2137–2147 (1999)

    Google Scholar 

  8. Antonio, J., Tadeu, A., Godinho, L.: Analytical evaluation of the acoustic insulation provided by double infinite walls. J. Sound Vib.. 263(1), 113–129 (2003)

    Article  Google Scholar 

  9. Carneal, J.P., Fuller, C.R.: An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems. J. Sound Vib. 272(3), 749–771 (2004)

    Article  Google Scholar 

  10. Wang, J., Lu, T.J., Woodhouse, J., Langley, R.S., Evans, J.: Sound transmission through lightweight double-leaf partitions: theoretical modelling. J. Sound Vib. 286, 817–847 (2005)

    Article  Google Scholar 

  11. Tanneau, O., Casimir, J.B., Lamary, P.: Optimization of multilayered panels with poroelastic components for an acoustical transmission objective. J. Acoust. Soc. Am. 120(3), 1227–1238 (2006)

    Article  Google Scholar 

  12. Lee, J.S., Kim, E.I., Kim, Y.Y., Kim, J.S., Kang, Y.J.: Optimal poroelastic layer sequencing for sound transmission loss maximization by topology optimization method. J. Acoust. Soc. Am. 122(4), 2097–2106 (2007)

    Article  Google Scholar 

  13. Chazot, J.D., Guyader, J.L.: Prediction of transmission loss of double panels with a patch-mobility method. J. Acoust. Soc. Am. 121(1), 267–278 (2007)

    Article  Google Scholar 

  14. Zhou, J., Bhaskar, A., Zhang, X.: Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean ow. J. Sound. Vib. 332(16), 3724–3734 (2013)

    Article  Google Scholar 

  15. Zhou, J., Bhaskar, A., Zhang, X.: Optimization for sound transmission through a double-wall panel. Appl. Acoust. 74(12), 1422–1428 (2013)

    Article  Google Scholar 

  16. D’Alessandro, V., Petrone, G., Franco, F., De Rosa, S.: A review of the vibroacoustics of sandwich panels: Models and experiments. J. Sandw. Struct. Mater. 15(5), 541–582 (2013)

    Article  Google Scholar 

  17. Lu, T.J., Xin, F.X.: Vibro-acoustics of Lightweight Sandwich, Science Press Beijing and Springer-Verlag Berlin Heidenberg (2014)

    Google Scholar 

  18. Shojaeifard, M.H., Talebitooti, R., Ranjbar, B., Ahmadi, R.: Power transmission through double-walled laminated composite panels considering porous layer-air gap insulation. Appl. Math. Mech. 35(11), 1447–1466 (2014). https://doi.org/10.1007/s10483-014-1877-7

    Article  MathSciNet  Google Scholar 

  19. Petrone, G., DAlessandro, V., Franco, F., De Rosa, S.: Numerical and experimental investigations on the acoustic power radiated by aluminium foam sandwich panels. Compos. Struct. 118, 170–177 (2014)

    Google Scholar 

  20. Hassan, S., Roohollad, T., Reza, A., Behzad, B.: A study on acoustic behavior of poroelastic media bonded between laminated composite panels. Latin Am. J. Solid Struct. 11, 2379–2407 (2014)

    Article  Google Scholar 

  21. Liu, Y.: Sound transmission through triple-panel structures lined with poroelastic materials. J. Sound Vib. 339, 376–395 (2015)

    Article  Google Scholar 

  22. Liu, Y., Sebastian, A.: Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel. J. Sound Vib. 344, 399–415 (2015)

    Article  Google Scholar 

  23. Daudin, C., Liu, Y.: Vibroacoustic behaviour of clamped double-wall panels lined with poroelastic materials. In: Proceedings of the 23rd International Congress on Sound and Vibration, vol. 341. Athens, Greece (2016)

    Google Scholar 

  24. Liu, Y., Daudin, C.: Analytical modeling of sound transmission through finite clamped double-wall sandwich panels lined with poroelastic materials. Compos. Struct. 172, 359–373 (2017)

    Article  Google Scholar 

  25. Acoustics-Determination of sound power levels of noise sources—Precision methods for broad-band sources in reverberation rooms, International Standard ISO 3741–88(E), International Organization of Standardization, Geneva, Switzerland (1998)

    Google Scholar 

  26. ASTM standard method for laboratory measurement of airborne sound transmission loss of building partitions and elements using sound intensity, American Standard ASTM 2249–02(E) (2002)

    Google Scholar 

  27. Tien. D.D.: Nghiên cứu tổn thất truyền âm qua tấm composite sandwich và ứng dụng vào giảm ồn tàu thủy. Đại học Nha Trang (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Ich Thinh .

Editor information

Editors and Affiliations

Appendix A. Expressions of the Matrix Equation (58)

Appendix A. Expressions of the Matrix Equation (58)

The expressions of the M2 x M2 submatrices \(\Delta _{1}^{{*i}} \left( {i = 1, 2, 3} \right)\), \(\Delta _{2}^{{*i}} \left( {i = 1, 2, 3, 4} \right)\) and \(\Delta _{1}^{{**i}} \left( {i = 1, 2, 3} \right)\), as appearing in the matrix elements Tij,mn (i, j = 1, 2; m, n = 1, 2, …, M), are as flows:

$$ \begin{gathered} \Delta _{1}^{{*1}} = \left[ {\begin{array}{*{20}c} {C_{1} } & {} & {} & {} \\ {} & {C_{2} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {C_{M} } \\ \end{array} } \right]_{{M^{2} xM^{2} }} ;{\text{ }}C_{i} = \left[ {\begin{array}{*{20}c} {\lambda _{{1,1i}}^{{*1}} } & {} & {} & {} \\ {} & {\lambda _{{1,2i}}^{{*1}} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\lambda _{{1,Mi}}^{{*1}} } \\ \end{array} } \right]_{{MxM}} {\text{ (i = 1,2,}}...{\text{,M); }} \hfill \\ \lambda _{{1,mn}}^{{*1}} = 3D_{{11}} \left( {\frac{m}{a}} \right)^{4} + 3D_{{22}} \left( {\frac{n}{b}} \right)^{4} + 4\left( {D_{{12}} + 2D_{{66}} } \right)\left( {\frac{m}{a}} \right)^{2} \left( {\frac{n}{b}} \right)^{2} \hfill \\ \end{gathered} $$
(A.1)
$$ \Delta _{1}^{{*2}} = \left[ {\begin{array}{*{20}c} {\lambda _{{1,1}}^{{*2}} } & {} & {} & {} \\ {} & {\lambda _{{1,2}}^{{*2}} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\lambda _{{1,M}}^{{*2}} } \\ \end{array} } \right]_{{M^{2} xM^{2} }} {\text{ ; }}\lambda _{{1,n}}^{{*2}} = 2D_{{22}} \left( {\frac{n}{b}} \right)^{4} \left[ {\begin{array}{*{20}c} 0 & 1 & \cdots & \cdots & 1 \\ 1 & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & 1 \\ 1 & \cdots & \cdots & 1 & 0 \\ \end{array} } \right]_{{MxM}} $$
(A.2)
$$ \Delta _{1}^{{*3}} = \left[ {\begin{array}{*{20}c} 0 & {\lambda _{1}^{{*3}} } & \cdots & \cdots & {\lambda _{1}^{{*3}} } \\ {\lambda _{1}^{{*3}} } & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & {\lambda _{1}^{{*3}} } \\ {\lambda _{1}^{{*3}} } & \cdots & \cdots & {\lambda _{1}^{{*3}} } & 0 \\ \end{array} } \right]_{{M^{2} xM^{2} }} ;{\text{ }}\lambda _{1}^{{*3}} = 2D_{{11}} \left( {\frac{m}{a}} \right)^{4} \left[ {\begin{array}{*{20}c} {1^{4} } & {} & {} & {} \\ {} & {2^{4} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {M^{4} } \\ \end{array} } \right]_{{MxM}} $$
(A.3)
$$ \Delta _{2}^{{*1}} = \frac{{9ab}}{4}\left[ {\begin{array}{*{20}c} 1 & {} & {} & {} \\ {} & 1 & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & 1 \\ \end{array} } \right]_{{M^{2} xM^{2} }} ;{\text{ }} $$
(A.4)
$$ \Delta _{2}^{{*2}} = \frac{{9ab}}{4}\left[ {\begin{array}{*{20}c} {\lambda _{2}^{{*2}} } & {} & {} & {} \\ {} & {\lambda _{2}^{{*2}} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\lambda _{2}^{{*2}} } \\ \end{array} } \right]_{{M^{2} xM^{2} }} ,\lambda _{2}^{{*2}} = \frac{{3ab}}{2}\left[ {\begin{array}{*{20}c} 0 & 1 & \cdots & \cdots & 1 \\ 1 & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & 1 \\ 1 & \cdots & \cdots & 1 & 0 \\ \end{array} } \right]_{{MxM}} $$
(A.5)
$$ \Delta _{2}^{{*3}} = \left[ {\begin{array}{*{20}c} 0 & {\lambda _{2}^{{*3}} } & \cdots & \cdots & {\lambda _{2}^{{*3}} } \\ {\lambda _{2}^{{*3}} } & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & {\lambda _{2}^{{*3}} } \\ {\lambda _{2}^{{*3}} } & \cdots & \cdots & {\lambda _{2}^{{*3}} } & 0 \\ \end{array} } \right]_{{M^{2} xM^{2} }} ;{\text{ }}\lambda _{2}^{{*3}} = \frac{{3ab}}{2}\left[ {\begin{array}{*{20}c} 1 & {} & {} & {} \\ {} & 1 & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & 1 \\ \end{array} } \right]_{{MxM}} $$
(A.6)
$$ \Delta _{2}^{{*4}} = \left[ {\begin{array}{*{20}c} 0 & {\lambda _{2}^{{*4}} } & \cdots & \cdots & {\lambda _{2}^{{*4}} } \\ {\lambda _{2}^{{*4}} } & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & {\lambda _{2}^{{*4}} } \\ {\lambda _{2}^{{*4}} } & \cdots & \cdots & {\lambda _{2}^{{*4}} } & 0 \\ \end{array} } \right]_{{M^{2} xM^{2} }} ;{\text{ }}\lambda _{2}^{{*4}} = ab\left[ {\begin{array}{*{20}c} 0 & 1 & \cdots & \cdots & 1 \\ 1 & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & 1 \\ 1 & \cdots & \cdots & 1 & 0 \\ \end{array} } \right]_{{MxM}} $$
(A.7)
$$ \begin{gathered} \Delta _{1}^{{**1}} = \left[ {\begin{array}{*{20}c} {C_{1}^{*} } & {} & {} & {} \\ {} & {C_{2}^{*} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {C_{M}^{*} } \\ \end{array} } \right]_{{M^{2} xM^{2} }} ;{\text{ }}C_{i}^{*} = \left[ {\begin{array}{*{20}c} {\lambda _{{1,1i}}^{{**1}} } & {} & {} & {} \\ {} & {\lambda _{{1,2i}}^{{**1}} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\lambda _{{1,Mi}}^{{**1}} } \\ \end{array} } \right]_{{MxM}} {\text{ (i = 1,2,}}...{\text{,M); }} \hfill \\ \lambda _{{1,mn}}^{{**1}} = 3D_{{11}}^{*} \left( {\frac{m}{a}} \right)^{4} + 3D_{{22}}^{*} \left( {\frac{n}{b}} \right)^{4} + 4\left( {D_{{12}}^{*} + 2D_{{66}}^{*} } \right)\left( {\frac{m}{a}} \right)^{2} \left( {\frac{n}{b}} \right)^{2} \hfill \\ \end{gathered} $$
(A.8)
$$ \Delta _{1}^{{**2}} = \left[ {\begin{array}{*{20}c} {\lambda _{{1,1}}^{{**2}} } & {} & {} & {} \\ {} & {\lambda _{{1,2}}^{{**2}} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {\lambda _{{1,M}}^{{**2}} } \\ \end{array} } \right]_{{M^{2} xM^{2} }} {\text{ ; }}\lambda _{{1,n}}^{{**2}} = 2D_{{22}}^{*} \left( {\frac{n}{b}} \right)^{4} \left[ {\begin{array}{*{20}c} 0 & 1 & \cdots & \cdots & 1 \\ 1 & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & 1 \\ 1 & \cdots & \cdots & 1 & 0 \\ \end{array} } \right]_{{MxM}} $$
(A.9)
$$ \Delta _{1}^{{**3}} = \left[ {\begin{array}{*{20}c} 0 & {\lambda _{1}^{{*3}} } & \cdots & \cdots & {\lambda _{1}^{{*3}} } \\ {\lambda _{1}^{{*3}} } & 0 & \ddots & {} & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & {} & \ddots & 0 & {\lambda _{1}^{{*3}} } \\ {\lambda _{1}^{{*3}} } & \cdots & \cdots & {\lambda _{1}^{{*3}} } & 0 \\ \end{array} } \right]_{{M^{2} xM^{2} }} ;{\text{ }}\lambda _{1}^{{**3}} = 2D_{{11}} \left( {\frac{m}{a}} \right)^{4} \left[ {\begin{array}{*{20}c} {1^{4} } & {} & {} & {} \\ {} & {2^{4} } & {} & {} \\ {} & {} & \ddots & {} \\ {} & {} & {} & {M^{4} } \\ \end{array} } \right]_{{MxM}} $$
(A.10)

The expression of the constants fmn (kx, ky) is in the form:

$$ \begin{array}{*{20}l} \begin{gathered} f_{{mn}} \left( {k_{x} ,k_{y} } \right) = \int\limits_{0}^{b} {\int\limits_{0}^{a} {\varphi _{{mn}} \left( {x,y} \right)e^{{ - j\left( {k_{x} x + k_{y} y} \right)}} dxdy} } \hfill \\ = \int\limits_{0}^{b} {\int\limits_{0}^{a} {\left( {1 - \cos \frac{{2m\pi x}}{a}} \right)\left( {1 - \cos \frac{{2n\pi y}}{b}} \right)e^{{ - j\left( {k_{x} x + k_{y} y} \right)}} dxdy} } \hfill \\ \end{gathered} \hfill \\ {{\text{ = }}\left\{ {\begin{array}{*{20}c} {ab{\text{ for k}}_{x} = 0,{\text{ }}k_{y} = 0} \\ {\frac{{4in^{2} \pi ^{2} a\left( {1 - e^{{ - jbk_{y} }} } \right)}}{{k_{y} \left( {k_{y}^{2} b^{2} - 4n^{2} \pi ^{2} } \right)}}{\text{ for k}}_{x} = 0,{\text{ }}k_{y} \ne 0{\text{ }}} \\ {\frac{{4im^{2} \pi ^{2} b\left( {1 - e^{{ - jak_{x} }} } \right)}}{{k_{x} \left( {k_{x}^{2} a^{2} - 4m^{2} \pi ^{2} } \right)}}{\text{ for k}}_{x} \ne 0,{\text{ }}k_{y} = 0} \\ { - \frac{{16m^{2} n^{2} \pi ^{4} \left( {1 - e^{{ - jak_{x} }} } \right)\left( {1 - e^{{ - jbk_{y} }} } \right)}}{{k_{x} k_{y} \left( {k_{x}^{2} a^{2} - 4m^{2} \pi ^{2} } \right)\left( {k_{y}^{2} b^{2} - 4n^{2} \pi ^{2} } \right)}}{\text{ for k}}_{x} \ne 0,{\text{ }}k_{y} \ne 0\,{\text{ }}} \\ \end{array} } \right.} \hfill \\ \end{array} $$
$$ \begin{aligned} f_{{mn}} \left( {k_{x} ,k_{y} } \right) & = \int\limits_{0}^{b} {\int\limits_{0}^{a} {\varphi _{{mn}} \left( {x,y} \right)e^{{ - j\left( {k_{x} x + k_{y} y} \right)}} } } \\ & = \int\limits_{0}^{b} {\int\limits_{0}^{a} {\sin \left( {\frac{{m\pi x}}{a}} \right)\sin \left( {\frac{{n\pi y}}{b}} \right)e^{{ - j\left( {k_{x} x + k_{y} y} \right)}} dxdy} } \\ \end{aligned} $$
$$ { = \left\{ {\begin{array}{*{20}c} {\frac{{ab{\text{ }}\left\{ {{\text{ }}1 - ( - 1)^{m} - \left( { - 1} \right)^{n} + \left( { - 1} \right)^{{m + n}} } \right\}}}{{mn\pi ^{2} }}{\text{ }}if{\text{ }}k_{x} = 0{\text{ }}and{\text{ }}k_{y} = 0} \\ {\frac{{mab\left\{ {{\text{ }}1 - ( - 1)^{m} e^{{ - jak_{x} }} - \left( { - 1} \right)^{n} + \left( { - 1} \right)^{{m + n}} e^{{ - jak_{x} }} } \right\}}}{{mn\pi ^{2} }}{\text{ }}if{\text{ }}k_{x} \ne 0{\text{ }}and{\text{ }}k_{y} = 0} \\ {\frac{{nab\left\{ {{\text{ }}1 - ( - 1)^{m} - \left( { - 1} \right)^{n} e^{{ - jbk_{y} }} + \left( { - 1} \right)^{{m + n}} e^{{ - jbk_{y} }} } \right\}}}{{mn\pi ^{2} }}{\text{ }}if{\text{ }}k_{x} = 0{\text{ }}and{\text{ }}k_{y} \ne 0} \\ {\frac{{mnab\pi ^{2} \left\{ {{\text{ }}1 - ( - 1)^{m} e^{{ - jak_{x} }} - \left( { - 1} \right)^{n} e^{{ - jbk_{y} }} + \left( { - 1} \right)^{{m + n}} e^{{ - j\left( {ak_{x} + bk_{y} } \right)}} } \right\}}}{{\left( {k_{x}^{2} a^{2} - m^{2} \pi ^{2} } \right)\left( {k_{y}^{2} b^{2} - n^{2} \pi ^{2} } \right)}}{\text{ }}if{\text{ }}k_{x} \ne 0{\text{ }}and{\text{ }}k_{y} \ne 0} \\ \end{array} } \right.}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thinh, T.I., Thanh, P.N. (2022). Vibroacoutic Behavior of Finite Composite Sandwich Plates with Foam Core. In: Tien Khiem, N., Van Lien, T., Xuan Hung, N. (eds) Modern Mechanics and Applications. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3239-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3239-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3238-9

  • Online ISBN: 978-981-16-3239-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics