Skip to main content

Agroforestry and Its Services for Soil Management and Sustainability

  • Chapter
  • First Online:
Sustainable Intensification for Agroecosystem Services and Management

Abstract

Agroforestry systems (AFs) ensure greater biodiversity that intensifies ecosystem services in tangible and intangible ways. Accounting ecosystem services through well-managed agroforestry systems are other important aspects of scientific studies nowadays. AFs are an integration of trees with crops, and it also includes animal farming with the intensive land management system. In the twenty-first century, land management is one of the major challenges, and AFs have the vast potential to address and recognize these challenges as well as facilitate various services in a sustainable manner. Soil is the largest natural resource that sustains billions of life and supports a variety of flora and fauna. Agroforestry (AF) plays important role in soil health management that ensures ecological stability and environmental sustainability. In AFs interaction between aboveground and belowground components takes place which helps in improving the soil quality and provides shelter to many biota and soil organisms. Through AF soil management and conservation can be done and also the protection of agroecosystem at the regional and local level. The practices of sustainable soil management (SSM) make the pave for achieving the goal of sustainability. Thus, scientific AFs promise the SSM that enhances biodiversity through intensification of ecosystem services at the global scale. Soil fertility enhancement, better nutrient cycling, and higher resource use efficiency along with carbon sequestration for climate change mitigation are important services provided by AFs. AF also reduces carbon and environmental footprints by reducing greenhouse gas (GHG) emission and its sequestration and storage into both plants and soils. Thus, an effective policy and good governance are more important in achieving sustainability through adopting better scientific AFs in the tropical world. A future roadmap must be laid on adopting location-specific AF models for maintaining soil health and quality for a better sustainable world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AF:

Agroforestry

AFs:

Agroforestry systems

C:

Carbon

CSA:

Climate-smart agriculture

CO2:

Carbon dioxide

N:

Nitrogen

GHGs:

Greenhouse gases

MPTs:

Multipurpose tree species

NTFPs:

Non-timber forest products

SOC:

Soil organic carbon

SSM:

Sustainable soil management

References

  • Ajit DSK, Ramnewaj HAK, Prasad R, Alam B, Rizvi RH, Gupta G, Pandey KK, Jain A (2013) Modeling analysis of potential carbon sequestration under existing agroforestry systems in three districts of Indo-Gangetic plains in India. Agrofor Syst 87:1129–1146

    Article  Google Scholar 

  • Atangana A, Khasa D, Chang S, Degrande A (2014) Agroforestry for soil conservation. In: Tropical agroforestry. Springer, Dordrecht, pp 203–216

    Chapter  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. Apple Academic Press Inc., New York, p 400

    Book  Google Scholar 

  • Banerjee A, Meena RS, Jhariya MK, Yadav DK (2021a) Agroecological footprints management for sustainable food system. Springer, Singapore, p 514

    Book  Google Scholar 

  • Banerjee A, Jhariya MK, Meena RS, Yadav DK (2021b) Ecological footprints in agroecosystem- an overview. In: Banerjee A, Meena RS, Jhariya MK, Yadav DK (eds) Agroecological footprints management for sustainable food system. Springer, Singapore, pp 1–23

    Chapter  Google Scholar 

  • Banerjee A, Jhariya MK, Raj A, Yadav DK, Khan N, Meena RS (2021c) Land footprint management and policies. In: Banerjee A, Meena RS, Jhariya MK, Yadav DK (eds) Agroecological footprints management for sustainable food system. Springer, Singapore, pp 221–246

    Chapter  Google Scholar 

  • Banerjee A, Jhariya MK, Raj A, Yadav DK, Khan N, Meena RS (2021d) Energy and climate footprint towards the environmental sustainability. In: Banerjee A, Meena RS, Jhariya MK, Yadav DK (eds) Agroecological footprints management for sustainable food system. Springer, Singapore, pp 415–443

    Chapter  Google Scholar 

  • Bargali K, Bargali SS (2009) Acacia nilotica: a multipurpose leguminous plant. Nat Sci 7(4):11–19

    Google Scholar 

  • Berhe DH, Retta AN (2015) Soil improvement by trees and crop production under tropical agroforestry systems: a review. Merit Res J Agric Sci Soil Sci 3(2):18–28

    Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83

    Article  CAS  Google Scholar 

  • Bundela DS (2007) Water management in northeast India - some case studies. Karnal 2007:40–46

    Google Scholar 

  • Cardinael R, Mao Z, Chenu C, Hinsinaer P (2020) Belowground functioning of agroforestry systems: recent advances and perspectives. Plant Soil 2020:1–13

    Article  CAS  Google Scholar 

  • Cassano CR, Barlow J, Pardini R (2014) Forest loss or management intensification? Identifying causes of mammal decline in cacao agroforests. Biol Conserv 169:14–22

    Article  Google Scholar 

  • Chang CH, Karanth KK, Robbins P (2018) Birds and beans: comparing avian richness and endemism in Arabica and robusta agroforests in India’s Western Ghats. Sci Rep 8:1–9

    Google Scholar 

  • Cheikh M, Pete S, David S, Lalisa D, Mercedes B (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    Article  Google Scholar 

  • Coulibaly JY, Chiputwa B, Nakelse T, Kundhlande G (2017) Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric Syst 155:52–69. https://doi.org/10.1016/j.agsy.2017.03.017

    Article  Google Scholar 

  • Dalemans F, Muys B, Maertens M (2019) A framework for profitability evaluation of agroforestry-based biofuel value chains: an application to Pongamia in India. GCB Bioenergy 11(7):852–870. https://doi.org/10.1111/gcbb.12605

    Article  Google Scholar 

  • Dawson I, Harwood C, Jamnadass R, Beniest J (2012) Agroforestry tree domestication: a primer. World Agroforestry Centre (ICRAF), Nairobi

    Google Scholar 

  • Dawson IK, Guariguata MR, Loo J, Weber JC, Lengkeek A, Bush D, Cornelius J, Guarino L, Kindt R, Orwa C, Russell J (2013) What is the relevance of smallholders’ agroforestry systems for conserving tropical tree species and genetic diversity in circa situm, in situ and ex situ settings? A review. Biodivers Conserv 22(2):301–324. https://doi.org/10.1007/s1053-1-012-0429-5

    Article  Google Scholar 

  • De Oliveira RE, Carvalhaes MA (2016) Agroforestry as a tool for restoration in atlantic forest: Can we find multi-purpose species? Oecol Aust 20:425–435

    Article  Google Scholar 

  • De Zoysa M (2001) A review of forest policy trends in Sri Lanka. Policy Trend Report 2001. Institute for Global Environmental Strategies (IGES): Kanagawa, Japan

    Google Scholar 

  • Desta KN, Lisanenwork N, Muktar M (2018) Physico-chemical properties of soil under the canopies of Faidherbia albida (Delile) A. Chev and Acacia tortilis (Forssk.) Hayen in park land agroforestry system in Central Rift Valley, Ethiopia. J Hortic Forestry 10(1):1–8

    Article  Google Scholar 

  • Dhyani SK, Ram A, Dev I (2016) Potential of agroforestry systems in carbon sequestration in India. Indian J Agric Sci 86(9):1103–1112

    CAS  Google Scholar 

  • Dhyani SK, Ram A, Newaj R, Handa AK, Dev I (2020) Agroforestry for carbon sequestration in tropical India. Carbon Manage Trop Sub-Trop Terrestr Syst 19:313–331. https://doi.org/10.1007/978-981-13-9628-1_19

    Article  Google Scholar 

  • Dobie P, Zinngrebe Y, Vidal A, Gassner A, Kumar C (2019) Position on inclusion of agricultural lands as contributing to conservation of biodiversity in the post-2020 biodiversity agenda. Trees on Farms for Biodiversity programme. World Agroforestry, Nairobi

    Google Scholar 

  • Dollinger J, Jose S (2018) Agroforestry for soil health. Agrofor Syst 92:213–219

    Article  Google Scholar 

  • Fagerholm N, Torralba M, Burgess PJ, Plieninger T (2016) A systematic map of ecosystem services assessments around European agroforestry. Ecol Indic 62:47–65. https://doi.org/10.1016/j.ecolind.2015.11.016

    Article  Google Scholar 

  • FAO (2015) Healthy soils are the basis for healthy food production. Rome, Italy

    Google Scholar 

  • FAO (2019) The state of the world’s biodiversity for food and agriculture. Bélanger J, Pilling D (eds.). FAO commission on genetic resources for food and agriculture assessments. FAO, Rome, p 572

    Google Scholar 

  • Flinzberger L, Zinngrebe Y, Plieninger T (2020) Labelling in Mediterranean agroforestry landscapes: a Delphi study on relevant sustainability indicators. Sustain Sci. https://doi.org/10.1007/s1162-5-020-00800-2

  • Froufe LCM, Schwiderke DK, Castilhano AC, Cezar RM, Steenbock W, Seoane CES, Bognola IA, Vezzani FM (2020) Nutrient cycling from leaf litter in multistrata successional agroforestry systems and natural regeneration at Brazilian Atlantic Rainforest Biome. Agrofor Syst 94(1):159–171

    Article  Google Scholar 

  • Gonza Âlez JE (1996) Tropical tree species for reforestation: Studies on seed storage, foliar nutrient content and wood variation. Ph.D. diss. Texas A&M Univ., College Station, TX

    Google Scholar 

  • Handa AK, Dhyani SK, Uma (2015) Three decades of agroforestry research in India: retrospection for way forward. Agric Res J 52(3):1–10. https://doi.org/10.5958/2395-146X.2015.00028.9

    Article  Google Scholar 

  • Handa AK, Chavan SB, Sirohi C, Rizvi RH (2020) Importance of agroforestry systems in carbon sequestration. National Agroforestry Symposium 2020 (agroforestry system 2020) on Climate Resilient Agroforestry Systems to Augment Livestock Productivity Ensuring Environmental Biodiversity 5 & 6 March, 2020, pp 221–235

    Google Scholar 

  • Hastings Z, Ticktin T, Botelho M, Reppun N, Kukea-Shultz K, Wong M, Melone A, Bremer L (2020) Integrating co-production and functional trait approaches for inclusive and scalable restoration solutions. Conserv Sci Pract 2(9):e250. https://doi.org/10.1111/csp2.250

    Article  Google Scholar 

  • Hillbrand A, Borelli S, Conigliaro M, Olivier E (2017) Agroforestry for landscape restoration. Exploring the potential of agroforestry to enhance the sustainability and resilience of degraded landscapes. FAO, Rome

    Google Scholar 

  • HLPE (2019) Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome

    Google Scholar 

  • ICRAF (2019) About agroforestry. Available http://www.worldagroforestry.org/

  • Jhariya MK, Singh L (2020) Herbaceous diversity and biomass under different fire regimes in a seasonally dry forest ecosystem. Environ Dev Sustain 22:1–19. https://doi.org/10.1007/s10668-020-00892-x

    Article  Google Scholar 

  • Jhariya MK, Singh L (2021) Effect of fire severity on soil properties in a seasonally dry forest ecosystem of Central India. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-03062-8

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests - precious earth. InTech, London, pp 238–257

    Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018a) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil sustainable management. Springer, Singapore, pp 315–345

    Chapter  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018b) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, New Delhi, pp 231–247

    Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer, Singapore, p 606

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. Apple Academic Press Inc., New York

    Book  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019c) Agriculture, forestry and environmental sustainability- a way forward. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 1–29

    Chapter  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A (2021a) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A (2021b) Ecological intensification of natural resources towards sustainable productive system. In: Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Chapter  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. https://doi.org/10.1007/s1045-7-009-9229-7

    Article  Google Scholar 

  • Kassie GW (2018) Agroforestry and farm income diversification: synergy or trade-off? The case of Ethiopia. Environ Syst Res 6:8. https://doi.org/10.1186/s4006-8-017-0085-6

    Article  Google Scholar 

  • Kesari V, Rangan L (2010) Development of Pongamia pinnata as an alternative biofuel crop - current status and scope of plantations in India. J Crop Sci Biotechnol 13(3):127–137

    Article  Google Scholar 

  • Khan N (2020a) Social and technological transformation vis-à-vis sustainability. Van Sangyan 7(3):16–20

    Google Scholar 

  • Khan N (2020b) Agroforestry towards sustainable agroecosystem. Van Sangyan 7(6):1–6

    CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Raj A, Banerjee A, Meena RS (2021a) Soil carbon stock and sequestration: implications for climate change adaptation and mitigation. In: Jhariya MK, Meena RS, Banerjee A (eds) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Khan N, Jhariya MK, Raj A, Banerjee A, Meena RS (2021b) Eco-designing for sustainability. In: Jhariya MK, Meena RS, Banerjee A (eds) Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Kumar S, Meena RS, Datta R, Verma SK, Yadav GS, Pradhan GS, Molaei A, Rahman GKMM, Mashuk HA (2020) Legumes for carbon and nitrogen cycling: an organic approach. Carbon Nitrogen Cycl Soil. https://doi.org/10.1007/978-981-13-7264-3_10.337-375

  • Kumar S, Meena RS, Singh RK, Munir TM, Datta R, Danish S, Singh GS (2021) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Sci Report 11:5289. https://doi.org/10.1038/s41598-021-84742-4

    Article  CAS  Google Scholar 

  • Kuyah S, Öborn I, Jonsson M, Dahlin AS, Barrios E, Muthuri C, Malmer A, Nyaga J, Magaju C, Namirembe S, Nyberg Y, Sinclair FL (2016) Trees in agricultural landscapes enhance provision of ecosystem services in Sub-Saharan Africa. Int J Biodiv Sci Ecosys Serv Manage 12(4):255–273. https://doi.org/10.1080/21513732.2016.1214178

    Article  Google Scholar 

  • Kuyah S, Whitney CW, Jonsson M, Sileshi GW, Öborn I, Muthuri CW, Luedeling E (2019) Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa- a meta-analysis. Agron Sustain Dev 39:47. https://doi.org/10.1007/s13593-019-0589-8

    Article  CAS  Google Scholar 

  • Lehmann LM, Smith J, Westaway S, Pisanelli A, Russo G, Borek R, Sandor M, Gliga A, Smith L, Ghaley BB (2020) Productivity and economic evaluation of agroforestry systems for sustainable production of food and non-food products. Sustain For 12(5429):1–9. https://doi.org/10.3390/su12135429

    Article  Google Scholar 

  • Liu J, Dietz T, Carpenter SR, Alberti M, Folke C, Moran E, Taylor WW (2007) Complexity of coupled human and natural systems. Science 317:1513–1516

    Article  CAS  PubMed  Google Scholar 

  • Lundgreen BO, Raintree JB (1982) Sustained agroforestry. In: Nestel B (ed) Agricultural research for development: potentials and challenges in Asia. ISNAR, Hague, pp 37–49

    Google Scholar 

  • Mafongoya P, Giller KE, Odee D, Gathumbi S, Ndufa SK, Sitompul SM (2004) Benefitingfrom N2-fixation and managing rhizobia. In: Van Noordwijk CG, Ong CK (eds) Below-ground interactions in tropicalagroecosystems. Concepts and models with multiple plant components. CABI, Wallingford, pp 227–242

    Chapter  Google Scholar 

  • Mansourian S, Parrotta J, Balaji P, Bellwood-Howard I, Bhasme S, Bixler RP, Boedhihartono AK, Carmenta R, Jedd T, de Jong W, Lake FK, Latawiec A, Lippe M, Rai ND, Sayer J, Van Dexter K, Vira B, Visseren-Hamakers I, Wyborn C, Yang A (2020) Putting the pieces together: integration for forest landscape restoration implementation. Land Degrad Dev 31:419–429. https://doi.org/10.1002/ldr.3448

    Article  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, p 541

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of brady rhizobiumjaponicum and arbuscular mycorrhizal fungi in the soy bean rhizosphere: a review. Plant Growth Regul 84:207–223. https://doi.org/10.1007/s10725-017-0334-8

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164. https://doi.org/10.1016/j.geoderma.2019.114164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752. https://doi.org/10.1016/j.catena.2020.104752

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020b) Impact of agrochemicals on soil microbiota and management: a review. Landscape 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Mishra PK, Rai SC (2013) Use of indigenous soil and water conservation practices among farmers in Sikkim Himalaya. Indian J Tradit Knowl 12:454–464

    Google Scholar 

  • Montagnini F, Nair PKR (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295

    Google Scholar 

  • Moreno G, Aviron S, Berg S, Crous-Duran J, Franca A, de Jalón SG, Hartel T, Mirck J, Pantera A, Palma JHN, Paulo JA (2018) Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services. Agrofor Syst 92(4):877–891. https://doi.org/10.1007/s1045-7-017-0126-1

    Article  Google Scholar 

  • Mosissa D (2019) Soil and Water conservation practices and its contribution to small holder farmers livelihoods in northwest Ethiopia: a shifting syndrome from natural resources rich areas. Mod Concep Dev Agrono 3(5):000574

    Google Scholar 

  • Muimba-Kankolongo A (2018) Food crop production by smallholder farmers in Southern Africa challenges and opportunities for improvement. Elsevier, London, p 382

    Google Scholar 

  • Murthy IK, Gupta M, Tomar S, Munsi M, Tiwari R, Hegde GT, Ravindranath NH (2013) Carbon sequestration potential of agroforestry systems in India. J Earth Sci Clim Change 4:131

    Article  CAS  Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54. https://doi.org/10.1007/s10705-004-5285-6

    Article  CAS  Google Scholar 

  • Nair PKR (2007) The coming of age of agroforestry. J Sci Food Agric 87:1613–1619. https://doi.org/10.1002/jsfa.2897

    Article  CAS  Google Scholar 

  • Nair PKR, Garrity D (2012) Agroforestry research and development: the way forward. Agroforestry - the future of global 515 land use. Adv Agroforestry 9:3. https://doi.org/10.1007/978-94-007-4676-3

    Article  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Vimala DN, Kumar BM, Showalter JM (2011) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestry tree database: a tree reference and selection guide version 4.0. International Centre for Agroforestry Research, Nairobi, Kenya

    Google Scholar 

  • Özbolat O, Ollio I, Lloret E, Egea M, Zornoza R (2020) How agroforestry systems influence the abundance of nitrogen cycle contributing microbial genes under Mediterranean conditions? EGU General Assembly 2020. EGU2020-21485. DOI: https://doi.org/10.5194/egusphere-egu2020-21485

  • Painkra GP, Bhagat PK, Jhariya MK, Yadav DK (2016) Beekeeping for poverty alleviation and livelihood security in Chhattisgarh, India. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 429–453

    Google Scholar 

  • Raj A (2019) Agroforestry and natural resource management: a linking concept. Acta Sci Microbiol 3(1):94

    Article  Google Scholar 

  • Raj A, Jhariya MK (2017) Sustainable agriculture with agroforestry: adoption to climate change. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change and sustainable agriculture. New India Publishing Agency (NIPA), New Delhi, pp 287–294

    Google Scholar 

  • Raj A, Jhariya MK (2020) Soil for resource management and sustainability. J Ecol Nat Resour 4(5):000208

    Google Scholar 

  • Raj A, Singh L (2017) Effects of girth class, injury and seasons on Ethephon induced gum exudation in Acacia nilotica in Chhattisgarh. Indian J Agrofor 19(1):36–41

    Google Scholar 

  • Raj A, Jhariya MK, Bargali SS (2018) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry. New India Publishing Agency, New Delhi, pp 1–19

    Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019) Agroforestry: a holistic approach for agricultural sustainability. In: Jhariya MK et al (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 101–131

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. Apple Academic Press Inc., New York, p 383

    Book  Google Scholar 

  • Raj A, Jhariya MK, Khan N, Banerjee A, Meena RS (2021) Ecological intensification for sustainable development. In: Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Rajan BKC (1987) Versatile eucalyptus. Diana Publishers, Bangalore, pp 164–172

    Google Scholar 

  • Rajasugunasekar D (2014) Cultivation techniques of Ailanthus excelsa. In: Transfer of tree cultivation technologies to Krishi Vigyan Kendras (KVKs) of Tamil Nadu and Puducherry. Institute of Forest Genetics and Tree Breeding, Coimbatore, pp 19–22

    Google Scholar 

  • Rambey R, Wijayanto N, Siregar IZ, Onrizal SA (2019) Study of agroforestry mindi planting pattern (Melia dubia cavanilles) in Selaawi Village, Garut District, West Java Province. IOP Conf Ser 374:012033

    Article  Google Scholar 

  • Rathia VK, Jhariya MK, Yadav DK, Banerjee A (2019) Diversity of traditional agroforestry practices of sarguja: implications for biodiversity conservation. Int J Ecol Dev 34(1):43–60

    Google Scholar 

  • Rendón-Sandoval FJ, Casas A, Moreno-Calles AI, Torres-García I, García-Frapolli E (2020) Traditional agroforestry systems and conservation of native plant diversity of seasonally dry tropical forests. Sustain For 12:4600. https://doi.org/10.3390/su12114600

    Article  Google Scholar 

  • Rolim SG, Chiarello AG (2004) Slow death of Atlantic forest trees in cocoa agroforestry in southeastern Brazil. Biodivers Conserv 13:2679–2694

    Article  Google Scholar 

  • Roy A (2011) Requirement of vegetables and fruit. The Daily Star (A English Newspaper)

    Google Scholar 

  • Saha R, Tomar JMS, Ghosh PK (2007) Evaluation and selection of multipurpose tree for improving soil hydro-physical behaviour under hilly eco-system of north east India. Agrofor Syst 69(3):239–247

    Article  Google Scholar 

  • Samara JS (2010) Horticulture opportunities in rainfed areas. Indian J Hortic 67(1):1–7

    Google Scholar 

  • Sharma R, Xu J, Sharma G (2007) Traditional Agro-forestry in Eastern Himalayan region: land management system supporting ecosystem services. Trop Ecol 48(2):1–12

    CAS  Google Scholar 

  • Shin S, Soe KT, Lee H, Kim TH, Lee S, Park MS (2020) A systematic map of agroforestry research focusing on ecosystem services in the Asia-pacific region. Forests 11(368):1–23. https://doi.org/10.3390/f11040368

    Article  CAS  Google Scholar 

  • Sikstus G, Sumeni S, Sabodin R, Muqfi IH, Nur M, Hairiah K, Useng D, van Noordwijk M (2020) Soil organic matter, mitigation and adaptation to climate change in cocoa–based agroforestry systems. Landscape 9:323

    Google Scholar 

  • Sileshi GW, Mafongoya PL, Nath AJ (2020) Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. In: Dagar JC, Gupta SR, Teketay D (eds) Agroforestry for degraded landscapes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4136-0_8

    Chapter  Google Scholar 

  • Sinclair FL (2004) Agroforestry. Encyclopedia of Forest Sciences, pp 27–32. https://doi.org/10.1016/B0-12-145160-7/00340-9

  • Singh J, Bishnoi M (2014) Effect of lopping intensities on fodder and fuelwood yield of Prosopis cineraria in arid zones of Thar. Acad Arena 6(10):90–94

    Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145

    Google Scholar 

  • Suprayogo D, Hairiah K, Noordwijk M, Cadisch G (2010) Agroforestry interactions in rain fed agriculture: can hedgerow intercropping systems sustain crop yield on an ultisolin Lampung (Indonesia)? Agri 32(3):205–215

    Google Scholar 

  • Takimoto A, Nair PK, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166

    Article  CAS  Google Scholar 

  • Ticktin T, Dacks R, Quazi S, Tora M, McGuigan A, Hastings Z, Naikatini A (2018) Linkages between measures of biodiversity and community resilience in Pacific Island agroforests. Conserv Biol 32:1–11

    Article  Google Scholar 

  • Tiwari TP, Brook RM, Wagsta P, Sinclair FL (2012) Effects of light environment on maize in hillside agroforestry systems of Nepal. Food Secur 4:103–114

    Article  Google Scholar 

  • Tripathi OP, Pandey HN, Tripathi RS (2009) Litter production, decomposition and physico-chemical properties of soil in 3 developed agroforestry systems of Meghalaya, Northeast India. African J Plant Sci 3(8):160–167

    CAS  Google Scholar 

  • Udawatta RP, Krstansky JJ, Henderson GS, Garrett HE (2002) Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. J Environ Qual 31:1214–1225

    Article  CAS  PubMed  Google Scholar 

  • Udawatta RP, Rankoth LM, Jose S (2019) Agroforestry and biodiversity. Sustain For 11:2879

    Article  Google Scholar 

  • Umashankar (2005) Indigenous agroforestry tree species for conservation and rural livelihood. In: Bhatt BP, Bujarbaruah KM (eds) Agroforestry in North East India: opportunities and challenges. ICAR Research Complex for NEH Region, Umiam, pp 149–174

    Google Scholar 

  • van Noordwijk M (ed) (2019) Sustainable development through trees on farms: agroforestry in its fifth decade. World Agroforestry (ICRAF), Bogor

    Google Scholar 

  • Viégas LB, da Silva JMS, Pala MC, Piña-Rodrigues FCM (2019) Restoring ecological functions using agroforestry systems in riparian forests. Floresta Ambiente 26(4):1–11. https://doi.org/10.1590/2179-8087.083017

    Article  Google Scholar 

  • Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, Seddon N (2017) Agroforestry can enhance food security while meeting other sustainable development goals. Trop Conserv Sci 10:194008291772066

    Article  Google Scholar 

  • Wilson MH, Lovell ST (2016) Agroforestry-the next step in sustainable and resilient agriculture. Sustain For 8:574

    Article  Google Scholar 

  • Yang S, Bai J, Zhao C, Lou H, Zhang C, Guan Y, Zhang Y, Wang Z, Yu X (2018) The assessment of the changes of biomass and riparian bu_er width in the terminal reservoir under the impact of the South-to-North Water Diversion Project in China. Ecol Indic 85:932–943

    Article  Google Scholar 

  • Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Van Noordwijk M, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. https://doi.org/10.1038/srep29987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, N. et al. (2021). Agroforestry and Its Services for Soil Management and Sustainability. In: Jhariya, M.K., Banerjee, A., Meena, R.S., Kumar, S., Raj, A. (eds) Sustainable Intensification for Agroecosystem Services and Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-3207-5_11

Download citation

Publish with us

Policies and ethics