Skip to main content

Laser Drilling of Superalloys and Composites

  • Chapter
  • First Online:
Additive and Subtractive Manufacturing of Composites

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 733 Accesses

Abstract

Unique properties such as high strength, wear and fatigue resistance at high temperatures have made superalloys best candidate materials for the aerospace industry. On the other hand, the development of composite materials particularly metal matrix composites (MMCs) have comparable properties to superalloys and have an advantage of being lightweight and high strength to wear ratio. A significant application involves the use of superalloys and composites in aerospace gas turbine components used in high-temperature applications. The mechanical machining of these materials is difficult due to higher tool wear and low material removal rate. Laser drilling is a well-established manufacturing process utilised to produce holes in various aeroengine components, in particular high-pressure turbine blades, combustors and nozzle guide vanes. High-value manufacturing industries always aim to improve process efficiency and produce parts at the lowest possible cost without affecting product quality. Taking into account the significance of these factors this chapter focuses on material removal volume, different hole quality attributes and manufacturing cost as performance measures to study the impacts of laser drilling process parameters for the selected materials. Conclusively, some future perspectives concerning the use of laser drilling are highlighted, specifically with advancements in science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(A\) :

Material absorptivity

\(A_{{\text{s}}}\) :

Cross-sectional area of the laser spot (mm2)

\(D_{Max}\) :

Maximum hole diameter (mm)

\(D_{Min}\) :

Minimum hole diameter (mm)

\(D_{ent}\) :

Entrance hole diameter (mm)

\(D_{ex}\) :

Exit hole diameter (mm)

\(D_{p}\) :

Pulse duration (s)

\(E_{abs}\) :

Energy absorbed by the material (J)

\(F_{l}\) :

Focal length (mm)

\(H_{c}\) :

Hole circularity

\(P\) :

Applied laser power (W)

\(P_{d}\) :

Laser power density (W/mm2)

\(P_{e}\) :

Pulse energy (J)

\(S_{d}\) :

Spot diameter (mm)

\(t\) :

Material thickness (mm)

\(\theta\) :

Taper angle

\(\emptyset\) :

Beam divergence (angle)

References

  1. Adelmann B, Hellmann R (2015) Rapid micro hole laser drilling in ceramic substrates using single mode fiber laser. J Mater Process Technol 221:80–86. https://doi.org/10.1016/j.jmatprotec.2015.02.014

    Article  CAS  Google Scholar 

  2. Akhil R (2018) A study on recent trends in the applications of metal matrix composites. Int J Res Appl Sci Eng Technol 6:172–180. https://doi.org/10.22214/ijraset.2018.5027

    Article  Google Scholar 

  3. Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46:1879–1891. https://doi.org/10.1016/j.ijmachtools.2005.11.005

    Article  Google Scholar 

  4. Bahar ND, Marimuthu S, Yahya WJ (2016) Pulsed Nd: YAG laser drilling of aerospace materials (Ti-6Al-4V). IOP Conf Ser Mater Sci Eng 152:012056. https://doi.org/10.1088/1757-899X/152/1/012056

    Article  CAS  Google Scholar 

  5. Bains PS, Sidhu SS, Payal HS (2016) Fabrication and machining of metal matrix composites: a review. Mater Manuf Process 31:553–573. https://doi.org/10.1080/10426914.2015.1025976

    Article  CAS  Google Scholar 

  6. Bandyopadhyay S, Sundar JKS, Sundararajan G, Joshi SV (2002) Geometrical features and metallurgical characteristics of Nd:YAG laser drilled holes in thick IN718 and Ti-6Al-4V sheets. J Mater Process Technol 127:83–95. https://doi.org/10.1016/S0924-0136(02)00270-4

    Article  CAS  Google Scholar 

  7. Bandyopadhyay S, Gokhale H, Sundar JKS et al (2005) A statistical approach to determine process parameter impact in Nd:YAG laser drilling of IN718 and Ti-6Al-4V sheets. Opt Lasers Eng 43:163–182. https://doi.org/10.1016/j.optlaseng.2004.06.013

    Article  Google Scholar 

  8. Basiev TT, Powell RC (2004) Handbook of laser technology and applications. Institute of Physics Publishing, Bristol, Philadelphia

    Google Scholar 

  9. Bathe R, Padmanabham G (2014) Evaluation of laser drilling of holes in thermal barrier coated superalloys. Mater Sci Technol 30:1778–1782. https://doi.org/10.1179/1743284713Y.0000000477

    Article  CAS  Google Scholar 

  10. Biffi CA, Previtali B (2013) Spatter reduction in nanosecond fibre laser drilling using an innovative nozzle. Int J Adv Manuf Technol 66:1231–1245. https://doi.org/10.1007/s00170-012-4402-y

    Article  Google Scholar 

  11. Biscaia RVB, Ribas MT, Júnior AB (2020) Effects of processing parameters on the micro-drilling through fast hole electroerosion and laser trepanning in Inconel 718. Int J Adv Manuf Technol 106:31–45. https://doi.org/10.1007/s00170-019-04394-7

    Article  Google Scholar 

  12. Chatterjee S, Mahapatra SS, Bharadwaj V et al (2018) Drilling of micro-holes on titanium alloy using pulsed Nd:YAG laser: parametric appraisal and prediction of performance characteristics. Proc Inst Mech Eng Part B J Eng Manuf 233:1872–1889. https://doi.org/10.1177/0954405418805604

    Article  CAS  Google Scholar 

  13. Chatterjee S, Mahapatra SS, Bharadwaj V et al (2018) Quality evaluation of micro drilled hole using pulsed Nd:YAG laser: a case study on AISI 316. Lasers Manuf Mater Process 5:248–269. https://doi.org/10.1007/s40516-018-0067-1

    Article  Google Scholar 

  14. Chien WT, Hou SC (2007) Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method. Int J Adv Manuf Technol 33:308–316. https://doi.org/10.1007/s00170-006-0454-1

    Article  Google Scholar 

  15. Corcoran A, Sexton L, Seaman B et al (2002) The laser drilling of multi-layer aerospace material systems. J Mater Process Technol 123:100–106. https://doi.org/10.1016/S0924-0136(01)01123-2

    Article  Google Scholar 

  16. D’Urso G, Quarto M, Ravasio C (2017) A model to predict manufacturing cost for micro-EDM drilling. Int J Adv Manuf Technol 91:2843–2853. https://doi.org/10.1007/s00170-016-9950-0

    Article  Google Scholar 

  17. Dahotre NB, Harimkar S (2008) Laser fabrication and machining of materials. Springer Science & Business Media, New York, USA

    Google Scholar 

  18. Dhaker KL, Pandey AK (2019) Particle swarm optimisation of hole quality characteristics in laser trepan drilling of Inconel 718. Def Sci J 69:37–45. https://doi.org/10.14429/dsj.69.12879

    Article  CAS  Google Scholar 

  19. Dietrich J, Blaesius C, Brief S, Kelbassa I (2011) Drilling with fiber lasers. In: International congress on applications of lasers & electro-optics. Laser Institute of America, pp 473–477

    Google Scholar 

  20. Dubey AK, Yadava V (2008) Laser beam machining-a review. Int J Mach Tools Manuf 48:609–628. https://doi.org/10.1016/j.ijmachtools.2007.10.017

    Article  Google Scholar 

  21. Dubey AK, Yadava V (2008) Experimental study of Nd:YAG laser beam machining—an overview. J Mater Process Technol 195:15–26. https://doi.org/10.1016/j.jmatprotec.2007.05.041

    Article  CAS  Google Scholar 

  22. Feng D, Shen H (2019) Hole quality control in underwater drilling of yttria-stabilized zirconia using a picosecond laser. Opt Laser Technol 113:141–149. https://doi.org/10.1016/j.optlastec.2018.12.019

    Article  CAS  Google Scholar 

  23. Fysikopoulos A, Stavropoulos P, Salonitis K, Chryssolouris G (2012) Energy efficiency assessment of laser drilling process. Phys Procedia 39:776–783. https://doi.org/10.1016/j.phpro.2012.10.100

    Article  Google Scholar 

  24. Ganji DK, Rajyalakshmi G (2020) Influence of alloying compositions on the properties of nickel-based superalloys: a review. In: Recent advances in mechanical engineering. Springer, pp 537–555

    Google Scholar 

  25. Gautam GD, Pandey AK (2018) Pulsed Nd:YAG laser beam drilling: a review. Opt Laser Technol 100:183–215. https://doi.org/10.1016/j.optlastec.2017.09.054

    Article  CAS  Google Scholar 

  26. Ghoreishi M, Low DKY, Li L (2002) Statistical modelling of laser percussion drilling for hole taper and circularity control. Proc Inst Mech Eng Part B J Eng Manuf 216:307–319. https://doi.org/10.1243/0954405021519988

    Article  Google Scholar 

  27. Ghoreishi M, Low DKY, Li L (2002) Comparative statistical analysis of hole taper and circularity in laser percussion drilling. Int J Mach Tools Manuf 42:985–995. https://doi.org/10.1016/S0890-6955(02)00038-X

    Article  Google Scholar 

  28. Ghoreishi M (2006) Statistical analysis of repeatability in laser percussion drilling. Int J Adv Manuf Technol 29:70–78. https://doi.org/10.1007/s00170-004-2489-5

    Article  Google Scholar 

  29. Ghoreishi M, Nakhjavani OB (2008) Optimisation of effective factors in geometrical specifications of laser percussion drilled holes. J Mater Process Technol 196:303–310. https://doi.org/10.1016/j.jmatprotec.2007.05.057

    Article  CAS  Google Scholar 

  30. Goyal R, Dubey AK (2014) Quality improvement by parameter optimization in laser trepan drilling of superalloy sheet. Mater Manuf Process 29:1410–1416. https://doi.org/10.1080/10426914.2014.912313

    Article  CAS  Google Scholar 

  31. Goyal R, Dubey AK (2016) Modeling and optimization of geometrical characteristics in laser trepan drilling of titanium alloy. J Mech Sci Technol 30:1281–1293. https://doi.org/10.1007/s12206-016-0233-3

    Article  Google Scholar 

  32. Guo D, Cai K, Yang J, Huang Y (2003) Spatter-free laser drilling of alumina ceramics based on gelcasting technology. J Eur Ceram Soc 23:1263–1267. https://doi.org/10.1016/S0955-2219(02)00299-6

    Article  CAS  Google Scholar 

  33. Gurav MM, Gupta U, Dabade UA (2019) Quality evaluation of precision micro holes drilled using pulsed Nd:YAG laser on aerospace nickel-based superalloy. Mater Today Proc 19:575–582. https://doi.org/10.1016/j.matpr.2019.07.736

    Article  CAS  Google Scholar 

  34. Han W, Pryputniewicz RJ (2004) Modeling and characterization of laser drilling of small holes on metal sheets. In: Proceedings of the ASME 2004 international mechanical engineering congress and exposition. ASME, Anaheim, California, USA, pp 189–197

    Google Scholar 

  35. Hooker JA, Doorbar PJ (2000) Metal matrix composites for aeroengines. Mater Sci Technol 16:725–731. https://doi.org/10.1179/026708300101508414

    Article  CAS  Google Scholar 

  36. Ion J (2005) Laser processing of engineering materials: principles, procedure and industrial application. Butterworth-Heinemann, Oxford

    Google Scholar 

  37. Kacar E, Mutlu M, Akman E et al (2009) Characterization of the drilling alumina ceramic using Nd:YAG pulsed laser. J Mater Process Technol 209:2008–2014. https://doi.org/10.1016/j.jmatprotec.2008.04.049

    Article  CAS  Google Scholar 

  38. Kainer KU (2006) Basics of metal matrix composites. In: Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, pp 1–54

    Google Scholar 

  39. Khan A, Celotto S, Tunna L et al (2007) Influence of microsupersonic gas jets on nanosecond laser percussion drilling. Opt Lasers Eng 45:709–718

    Article  Google Scholar 

  40. Kudesia SS, Rodden WSO, Hand DP, Jones JDC (2001) Effect of beam quality on single pulse laser drilling. In: International congress on applications of lasers & electro-optics. Laser Institute of America, pp 1439–1448

    Google Scholar 

  41. Leigh S, Sezer K, Li L et al (2010) Recast and oxide formation in laser-drilled acute holes in CMSX-4 nickel single-crystal superalloy. Proc Inst Mech Eng Part B J Eng Manuf 224:1005–1016. https://doi.org/10.1243/09544054JEM1541

    Article  Google Scholar 

  42. Li ZY, Wei XT, Guo YB, Sealy MP (2015) State-of-art, challenges, and outlook on manufacturing of cooling holes for turbine blades. Mach Sci Technol 19:361–399. https://doi.org/10.1080/10910344.2015.1051543

    Article  CAS  Google Scholar 

  43. Low DKY, Li L, Byrd PJ (2000) The effects of process parameters on spatter deposition in laser percussion drilling. Opt Laser Technol 32:347–354. https://doi.org/10.1016/S0030-3992(00)00079-7

    Article  CAS  Google Scholar 

  44. Low DKY, Li L, Corfe AG (2000) Effects of assist gas on the physical characteristics of spatter during laser percussion drilling of NIMONIC 263 alloy. Appl Surf Sci 154–155:689–695. https://doi.org/10.1016/S0169-4332(99)00427-4

    Article  Google Scholar 

  45. Low DKY, Li L, Byrd PJ (2003) Spatter prevention during the laser drilling of selected aerospace materials. J Mater Process Technol 139:71–76. https://doi.org/10.1016/S0924-0136(03)00184-5

    Article  CAS  Google Scholar 

  46. Majumdar JD, Manna I (2003) Laser processing of materials. Sadhana 28:495–562. https://doi.org/10.1007/BF02706446

    Article  Google Scholar 

  47. Majumdar JD, Manna I (2011) Laser material processing. Int Mater Rev 56:341–388. https://doi.org/10.1179/1743280411Y.0000000003

    Article  CAS  Google Scholar 

  48. Marimuthu S, Antar M, Dunleavey J, Hayward P (2019) Millisecond fibre laser trepanning drilling of angular holes. Int J Adv Manuf Technol 102:2833–2843. https://doi.org/10.1007/s00170-019-03389-8

    Article  Google Scholar 

  49. Marimuthu S, Dunleavey J, Liu Y et al (2019) Characteristics of hole formation during laser drilling of SiC reinforced aluminium metal matrix composites. J Mater Process Technol 271:554–567. https://doi.org/10.1016/j.jmatprotec.2019.04.030

    Article  CAS  Google Scholar 

  50. Marimuthu S, Dunleavey J, Liu Y et al (2019) Water-jet guided laser drilling of SiC reinforced aluminium metal matrix composites. J Compos Mater 53:3787–3796. https://doi.org/10.1177/0021998319848062

    Article  CAS  Google Scholar 

  51. Marimuthu S, Dunleavey J, Smith B (2019) Laser based machining of aluminum metal matrix composites. Procedia CIRP 85:243–248. https://doi.org/10.1016/j.procir.2019.09.007

    Article  Google Scholar 

  52. Mazumder J (2010) Lasers in aerospace industry manufacturing. Encycl Aerosp Eng 1–20. https://doi.org/10.1002/9780470686652.eae208

  53. McNally CA, Folkes J, Pashby IR (2004) Laser drilling of cooling holes in aeroengines: state of the art and future challenges. Mater Sci Technol 20:805–813. https://doi.org/10.1179/026708304225017391

    Article  CAS  Google Scholar 

  54. Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149:2–17. https://doi.org/10.1016/j.jmatprotec.2004.02.003

    Article  Google Scholar 

  55. Misawa H, Juodkazis S (2006) 3D laser microfabrication: Principles and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  56. Mishra S, Yadava V (2013) Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using Nd: YAG laser. Opt Lasers Eng 51:681–695. https://doi.org/10.1016/j.optlaseng.2013.01.006

    Article  Google Scholar 

  57. Mishra S, Yadava V (2013) Modelling of hole taper and heat affected zone due to laser beam percussion drilling. Mach Sci Technol 17:270–291. https://doi.org/10.1080/10910344.2013.780554

    Article  CAS  Google Scholar 

  58. Mishra S, Yadava V (2013) Prediction of hole characteristics and hole productivity during pulsed Nd:YAG laser beam percussion drilling. Proc Inst Mech Eng Part B J Eng Manuf 227:494–507. https://doi.org/10.1177/0954405413475616

    Article  CAS  Google Scholar 

  59. Morar NI, Roy R, Mehnen J et al (2018) Investigation of recast and crack formation in laser trepanning drilling of CMSX-4 angled holes. Int J Adv Manuf Technol 95:4059–4070. https://doi.org/10.1007/s00170-017-1481-9

    Article  Google Scholar 

  60. Müller F, Monaghan J (2001) Non-conventional machining of particle reinforced metal matrix composites. J Mater Process Technol 118:278–285. https://doi.org/10.1016/S0924-0136(01)00941-4

    Article  Google Scholar 

  61. Naeem M (2006) Laser percussion drilling of aerospace material using high peak power fiber delivered lamp-pumped pulsed Nd: YAG laser. In: International congress on applications of lasers & electro-optics. Laser Institute of America, p 308

    Google Scholar 

  62. NASA (2015) NASA cost estimating handbook (CEH). Version 4.0, National Aeronautics and Space Administration

    Google Scholar 

  63. Nath AK (2014) Laser drilling of metallic and nonmetallic substrates. In: Comprehensive materials processing. Elsevier, pp 115–175

    Google Scholar 

  64. Nawaz S, Awan MB, Saeed B, Abbas N (2019) Experimental investigation of taper angle during millisecond laser drilling of 18CrNi8 steel under multiple parameters and defocused plane. Mater Res Express 6:086531. https://doi.org/10.1088/2053-1591/ab17a9

    Article  CAS  Google Scholar 

  65. Ng GKL, Li L (2001) The effect of laser peak power and pulse width on the hole geometry repeatability in laser percussion drilling. Opt Laser Technol 33:393–402. https://doi.org/10.1016/S0030-3992(01)00048-2

    Article  Google Scholar 

  66. Ng GKL, Crouse PL, Li L (2006) An analytical model for laser drilling incorporating effects of exothermic reaction, pulse width and hole geometry. Int J Heat Mass Transf 49:1358–1374. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.002

    Article  CAS  Google Scholar 

  67. Padhee S, Pani S, Mahapatra SS (2012) A parametric study on laser drilling of Al/SiC p metal-matrix composite. Proc Inst Mech Eng Part B J Eng Manuf 226:76–91. https://doi.org/10.1177/0954405411415939

    Article  CAS  Google Scholar 

  68. Panda S, Mishra D, Biswal BB (2011) Determination of optimum parameters with multi-performance characteristics in laser drilling—a grey relational analysis approach. Int J Adv Manuf Technol 54:957–967. https://doi.org/10.1007/s00170-010-2985-8

    Article  Google Scholar 

  69. Parthipan N, Ilangkumaran M (2020) Material synthesis, characterization and performance measurement of laser drilling for stir casted Cu-Ni-Tib2 metal matrix. Mater Today Proc 21:392–400. https://doi.org/10.1016/j.matpr.2019.06.137

    Article  CAS  Google Scholar 

  70. Ready JF, Farson DF, Feeley T (2001) LIA handbook of laser materials processing. Laser Institute of America, Orlando

    Google Scholar 

  71. Reed RC (2008) The superalloys: fundamentals and applications. Cambridge University Press, Cambridge

    Google Scholar 

  72. Riveiro A, Quintero F, Lusquiños F et al (2011) The role of the assist gas nature in laser cutting of Aluminum alloys. Phys Procedia 12:548–554. https://doi.org/10.1016/j.phpro.2011.03.069

    Article  CAS  Google Scholar 

  73. Rockstroh TJ, Scheidt D, Ash C (2002) Advances in laser drilling of turbine airfoils. Ind Laser Solut Manuf 17:15–21

    Google Scholar 

  74. Salonitis K, Stournaras A, Tsoukantas G et al (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183:96–103. https://doi.org/10.1016/j.jmatprotec.2006.09.031

    Article  CAS  Google Scholar 

  75. Sarfraz S, Shehab E, Salonitis K (2017) A review of technical challenges of laser drilling manufacturing process. In: Proceedings of the 15th International conference on manufacturing research. IOS Press, University of Greenwich, UK, pp 51–56

    Google Scholar 

  76. Sarfraz S, Shehab E, Salonitis K et al (2018) Evaluation of productivity and operating cost of laser drilling process—a case study. In: Proceedings of the 16th International conference on manufacturing research. IOS Press, University of Skövde, Sweden, pp 9–14

    Google Scholar 

  77. Sarfraz S, Shehab E, Salonitis K et al (2018) Towards cost modelling for laser drilling process. In: Proceedings of the 25th ISPE Inc. International conference on transdisciplinary engineering. IOS Press, University of Modena and Reggio Emilia, Italy, pp 611–618

    Google Scholar 

  78. Sarfraz S, Shehab E, Salonitis K et al (2019) An experimental investigation of productivity, cost and quality for single-pulse laser drilling process. In: Proceedings of the 15th International conference on manufacturing research. IOS Press, Queen’s University, Belfast, pp 334–339

    Google Scholar 

  79. Sarfraz S, Shehab E, Salonitis K, Suder W (2019) Experimental investigation of productivity, specific energy consumption, and hole quality in single-pulse, percussion, and trepanning drilling of in 718 superalloy. Energies 12:4610. https://doi.org/10.3390/en12244610

    Article  Google Scholar 

  80. Sarfraz S, Shehab E, Salonitis K et al (2020) An integrated analysis of productivity, hole quality and cost estimation of single-pulse laser drilling process. Proc Inst Mech Eng Part B J Eng Manuf. https://doi.org/10.1177/0954405420968161

  81. Scallan P (2003) Process planning: the design/manufacture interface. Butterworth-Heinemann, Oxford

    Book  Google Scholar 

  82. Schaaf P (2010) Laser processing of materials: fundamentals, applications and developments. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  83. Schneider M, Girardot J, Berthe L (2011) Recoil pressure and surface temperature in laser drilling. In: International congress on applications of lasers & electro-optics. Laser Institute of America, pp 478–481

    Google Scholar 

  84. Shen ZH, Zhang SY, Lu J, Ni XW (2001) Mathematical modeling of laser induced heating and melting in solids. Opt Laser Technol 33:533–537. https://doi.org/10.1016/S0030-3992(01)00005-6

    Article  CAS  Google Scholar 

  85. Shin J, Mazumder J (2016) Shallow angle drilling of Inconel 718 using a helical laser drilling technique. J Manuf Sci Eng 139:031004. https://doi.org/10.1115/1.4034718

    Article  Google Scholar 

  86. Solati A, Hamedi M, Safarabadi M (2019) Comprehensive investigation of surface quality and mechanical properties in CO2 laser drilling of GFRP composites. Int J Adv Manuf Technol 102:791–808. https://doi.org/10.1007/s00170-018-3164-6

    Article  Google Scholar 

  87. Steen WM, Mazumder J (2010) Laser material processing, 4th edn. Springer, London

    Book  Google Scholar 

  88. Tewari R, Singh MK, Zafar S, Powar S (2020) Parametric optimization of laser drilling of microwave-processed kenaf/HDPE composite. Polym Polym Compos 096739112090570. https://doi.org/10.1177/0967391120905705

  89. Wang H, Ren N, Zhang W et al (2017) Influence of assist gases on pulsed laser drilling of nickel-based superalloy. In: 2017 Conference on lasers and electro-optics Pacific rim (CLEO-PR). IEEE, pp 1–4

    Google Scholar 

  90. Wang R, Wang K, Dong X et al (2018) An experimental investigation into the defects of laser-drilled holes in thermal barrier coated Inconel 718 superalloys. Int J Adv Manuf Technol 96:1467–1481. https://doi.org/10.1007/s00170-018-1592-y

    Article  Google Scholar 

  91. Whitehouse DJ (2002) Surfaces and their measurements. Hermes Penton Science, London

    Google Scholar 

  92. Yeo CY, Tam SC, Jana S, Lau MWS (1994) A technical review of the laser drilling of aerospace materials. J Mater Process Tech 42:15–49. https://doi.org/10.1016/0924-0136(94)90073-6

    Article  Google Scholar 

  93. Yunus M, Alsoufi MS (2019) Mathematical modeling of multiple quality characteristics of a laser microdrilling process used in Al7075/SiCp metal matrix composite using genetic programming. Model Simul Eng 2019:1–15. https://doi.org/10.1155/2019/1024365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoaib Sarfraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarfraz, S., Shehab, E., Salonitis, K., Suder, W. (2021). Laser Drilling of Superalloys and Composites. In: Mavinkere Rangappa, S., Gupta, M.K., Siengchin, S., Song, Q. (eds) Additive and Subtractive Manufacturing of Composites. Springer Series in Advanced Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-16-3184-9_5

Download citation

Publish with us

Policies and ethics