Skip to main content

Diagnosis of Parkinson Disease: Imaging and Non-Imaging Techniques

  • Chapter
  • First Online:
Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 472 Accesses

Abstract

Parkinson’s disease (PD) is a disorder of the nervous system caused due to the consequence of dopaminergic neuron loss in the brain’s substantia nigra region. The neurological disorder leads to disability, and it is the second major cause of death worldwide. In 1990, the number of PD patients recorded was 2.5 million people, and in 2016, the count became 6.1 million people. This alarming prevalence rate shows that it has doubled in 17 years. About 276 million PD cases suffer from disability-adjusted life years (DALYs) [1]. Parkinson’s disease is an aberrantly increasing, progressive neurodegenerative disease that affects individuals, families, and society. PD is often termed as an idiopathic disease since the cause of the disease is unknown. The diagnosis of PD is clinical since no particular test can conclude the disease. There are various diagnostic tools used in combination to diagnose multiple symptoms of the disease. This paper comprehensively gives the different PD stages, the respective clinical tools (imaging and non-imaging techniques), and the research tools (imaging and non-imaging techniques) used to diagnose PD accurately. The sensitivity of current clinical diagnosis using gold standard techniques is just 23% for non-responsive PD subjects [2]. Thus, the risk of increasing PD subjects’ burden can be controlled by choosing appropriate diagnostic tools. The chapter aims to review various imaging and non-imaging tools used in multiple stages of the disease to identify the more accurate and sensitive diagnostic tool. Brain imaging using PET, SPECT, TCS, MRI, and thermal imaging for finding autonomic dysfunction are some of the non-invasive techniques that can diagnose the disease. In this article, various imaging techniques used for the diagnosis of early stages of PD  is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maiti, P., Manna, J., Dunbar, G.L.: Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 6, 28 (2017)

    Google Scholar 

  2. Ibrahim, N., Kusmirek, J., Struck, A.F., Floberg, J.M., Perlman, S.B., Gallagher, C., Hall, L.T.: The sensitivity and specificity of F-DOPA PET in a movement disorder clinic. Am. J. Nucl. Med. Molec. Imag. 6(1), 102 (2016)

    Google Scholar 

  3. Jankovic, J., Tan, E.K.: Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neuros. Psyc. 91(8), 795–808 (2020)

    Article  Google Scholar 

  4. Hong, Z., Shi, M., Chung, K.A., Quinn, J.F., Peskind, E.R., Galasko, D., … Zhang, J.: DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133(3), 713 − 726 (2010)

    Google Scholar 

  5. Longhena, F., Faustini, G., Missale, C., Pizzi, M., Spano, P., Bellucci, A.: The contribution of α-synuclein spreading to Parkinson’s disease synaptopathy. Neur. Plast. (2017)

    Google Scholar 

  6. El Agnaf, O.M., Salem, S.A., Paleologou, K.E., Curran, M.D., Gibson, M.J., Court, J.A., … Allsop, D.: Detection of oligomeric forms of α synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. The FASEB J. 20(3), 419 − 425 (2006)

    Google Scholar 

  7. Berendse, H.W., Booij, J., Francot, C.M., Bergmans, P.L., Hijman, R., Stoof, J.C., Wolters, E.C.: Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann. Neurol. Official J. Am. Neurol. Assoc. Child Neurol. Soc. 50(1), 34–41 (2001)

    Google Scholar 

  8. Murman, D.L.: Early treatment of Parkinson’s disease: opportunities for managed care. Am. J. Manag. Care 18(7), S183 (2012)

    Google Scholar 

  9. Martinez-Martin, P., Rodriguez-Blazquez, C., Kurtis, M.M., Chaudhuri, K.R., NMSS Validation Group: The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Movem. Disord. 26(3), 399–406 (2011)

    Article  Google Scholar 

  10. Prakash, K.M., Nadkarni, N.V., Lye, W.K., Yong, M.H., Tan, E.K.: The impact of non-motor symptoms on the quality of life of Parkinson’s disease patients: a longitudinal study. European J. Neurol. 23(5), 854–860 (2016)

    Article  Google Scholar 

  11. Antonini, A., Barone, P., Marconi, R., Morgante, L., Zappulla, S., Pontieri, F.E., … Colosimo, C.: The progression of non-motor symptoms in Parkinson’s disease and their contribution to motor disability and quality of life. J. Neurol. 259(12), 2621 − 2631 (2012)

    Google Scholar 

  12. Busse, K., Heilmann, R., Kleinschmidt, S., Abu-Mugheisib, M., Höppner, J., Wunderlich, C., Walter, U.: Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J. Neurol. Neurosurg. Psyc. 83(4), 441–447 (2012)

    Article  Google Scholar 

  13. Lebouvier, T., Neunlist, M., des Varannes, S.B., Coron, E., Drouard, A., N’Guyen, J.M., … Derkinderen, P.: Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PloS One, 5(9), e12728 (2010)

    Google Scholar 

  14. Tolosa, E., Gaig, C., Santamaría, J., Compta, Y.: Diagnosis and the premotor phase of Parkinson disease. Neurology, 72(7 Supplement 2), S12 − S20 (2009)

    Google Scholar 

  15. Imperatore, R., Palomba, L., Cristino, L.: Role of Orexin-a in hypertension and obesity. Curr. Hypertens. Rep. 19, 34. https://doi.org/10.1007/s11906-0729-y

  16. Wienecke, M., Werth, E., Poryazova, R., Baumann-Vogel, H., Bassetti, C.L., Weller, M., et al.: Progressive dopamine and hypocretin deficiencies in Parkinson’s disease: is there an impact on sleep and wakefulness? J. Sleep Res. 710–717 (2012). https://doi.org/10.1111/j.1365-2869.2012.01027.x

  17. Niethammer, M., Feigin, A., Eidelberg, D.: Functional neuroimaging in Parkinson’s disease. Cold Spring Harbor Persp. Med. 2(5), (2012)

    Google Scholar 

  18. Breen, D.P., Michell, A.W., Barker, R.A.: Parkinson’s disease–the continuing search for biomarkers. Clin. Chem. Laborat. Med. 49(3), 393–401 (2011)

    Google Scholar 

  19. Breen, D.P., Rowe, J.B., Barker, R.A.: Role of brain imaging in early parkinsonism. BMJ, 342 (2011)

    Google Scholar 

  20. Loane, C., Politis, M.: Positron emission tomography neuroimaging in Parkinson’s disease. Am. J. Transl. Res. 3(4), 323 (2011)

    Google Scholar 

  21. Peppard, R.F., Martin, W.W., Carr, G.D., Grochowski, E., Schulzer, M., Guttman, M., … Calne, D.B.: Cerebral glucose metabolism in Parkinson’s disease with and without dementia. Arch. Neurol. 49(12), 1262 − 1268 (1992)

    Google Scholar 

  22. Brück, A., Aalto, S., Rauhala, E., Bergman, J., Marttila, R., Rinne, J.O.: A follow-up study on 6-[18F] fluoro-L-dopa uptake in early Parkinson’s disease shows nonlinear progression in the putamen. Movem. Disord. 24(7), 1009–1015 (2009)

    Article  Google Scholar 

  23. Pavese, N., Metta, V., Bose, S.K., Chaudhuri, K.R., Brooks, D.J.: Fatigue in Parkinson’s disease is linked to striatal and limbic serotonergic dysfunction. Brain 133(11), 3434–3443 (2010)

    Article  Google Scholar 

  24. Miyamoto, M., Miyamoto, T., Saitou, J., Sato, T.: Longitudinal study of striatal aromatic l-amino acid decarboxylase activity in patients with idiopathic rapid eye movement sleep behavior disorder. Sleep Med. 68, 50–56 (2020)

    Article  Google Scholar 

  25. Catafau, A.M., Searle, G.E., Bullich, S., Gunn, R.N., Rabiner, E.A., Herance, R., … Laruelle, M.: Imaging cortical dopamine D1 receptors using [11C] NNC112 and ketanserin blockade of the 5-HT2A receptors. J. Cerebral Blood Flow Metabol. 30(5), 985 − 993 (2010)

    Google Scholar 

  26. Rinne, J.O., Laihinen, A., Rinne, U.K., Någren, K., Bergman, J., Ruotsalainen, U.: PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Movem. Disord. Off. J. Movem. Disord. Soc. 8(2), 134–138 (1993)

    Article  Google Scholar 

  27. Turjanski, N., Lees, A.J., Brooks, D.J.: In vivo studies on striatal dopamine D1 and D2 site binding in L-dopa-treated Parkinson’s disease patients with and without dyskinesias. Neurology 49(3), 717–723 (1997)

    Article  Google Scholar 

  28. Antonini, A., Schwarz, J., Oertel, W.H., Beer, H.F., Madeja, U.D., Leenders, K.L.: [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson’s disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors. Neurology 44(7), 1325–1329 (1994)

    Article  Google Scholar 

  29. Leenders, K.L., Salmon, E.P., Tyrrell, P., Perani, D., Brooks, D.J., Sager, H., Jones, T., Marsden, C.D., Frackowiak, R.S.: The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch. Neurol. 47(12), 1290–1298 (1990)

    Article  Google Scholar 

  30. Fazio, P., Svenningsson, P., Forsberg, A., Jönsson, E.G., Amini, N., Nakao, R., … Varrone, A.: Quantitative analysis of 18F-(E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4′-methyl-phenyl) nortropane binding to the dopamine transporter in Parkinson disease. J. Nucl. Med. 56(5), 714 − 720 (2015)

    Google Scholar 

  31. Arlicot, N., Vercouillie, J., Malherbe, C., Bidault, R., Gissot, V., Maia, S., et al.: PET imaging of dopamine transporter with 18F-LBT999: first human exploration. J. Nucl. Med. 58, 1276 (2017). https://doi.org/10.1111/j.1527-3458.2007.00033.x

    Article  Google Scholar 

  32. Rinne, J.O., Ruottinen, H., Bergman, J., Haaparanta, M., Sonninen, P., Solin, O.: Usefulness of a dopamine transporter PET ligand [18F] β-CFT in assessing disability in Parkinson’s disease. J. Neurol. Neurosurg. Psych. 67(6), 737–741 (1999)

    Article  Google Scholar 

  33. Tong, J., Wilson, A.A., Boileau, I., Houle, S., Kish, S.J.: Dopamine modulating drugs influence striatal (+)-[11C] DTBZ binding in rats: VMAT2 binding is sensitive to changes in vesicular dopamine concentration. Synapse 62(11), 873–876 (2008)

    Article  Google Scholar 

  34. Bohnen, N.I., Albm, R.L., Koeppe, R.A., Wernette, K.A., Kilbourn, M.R., Minoshima, S., Frey, K.A.: Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J. Cerebral Blood Flow & Metabol. 26(9), 1198–1212 (2006)

    Article  Google Scholar 

  35. Rinne, J.O., Laihinen, A., Ruottinen, H., Ruotsalainen, U., Någren, K., Lehikoinen, P., Oikonen, V., Rinne, U.K.: Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease: a PET study with [11C]raclopride. J. Neurol. Sci. 132(2), 156–161 (1995)

    Article  Google Scholar 

  36. Brooks, D.J.: Imaging non-dopaminergic function in Parkinson’s disease. Molecul. Imag. Biol. 9(4), 217–222 (2007)

    Article  Google Scholar 

  37. Stoessl, A.J., Lehericy, S., Strafella, A.P.: Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. The Lancet 384(9942), 532–544 (2014)

    Article  Google Scholar 

  38. Pahuja, G., Nagabhushan, T.N., Prasad, B.: Early detection of Parkinson’s disease by using SPECT imaging and biomarkers. J. Intell. Syst. 29(1), 1329–1344 (2019)

    Article  Google Scholar 

  39. Goldstein, David S.: Sympathetic neuroimaging. In Handbook of clinical neurology, vol. 117, pp. 365 − 370. Elsevier (2013)

    Google Scholar 

  40. Politis, M.: Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat. Rev. Neurol. 10(12), 708 (2014)

    Article  Google Scholar 

  41. Ishikawa, T., Dhawan, V., Kazumata, K., Chaly, T.: Comparative nigrostriatal dopaminergic imaging with iodine-123-betaCIT-FP/SPECT and fluorine-18-FDOPA/PET. J. Nucl. Med. 37(11), 1760 (1996)

    Google Scholar 

  42. Eshuis, S.A., Maguire, R.P., Leenders, K.L., Jonkman, S., Jager, P.L.: Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. European J. Nucl. Med. Molecul. Imaging 33(2), 200–209 (2006)

    Article  Google Scholar 

  43. Yousaf, T., Wilson, H., Politis, M.: Imaging the nonmotor symptoms in Parkinson’s disease. In: International Review of Neurobiology, vol. 133, pp. 179 − 257. Academic Press (2017)

    Google Scholar 

  44. Kung, H.F., Kung, M.P., Choi, S.R.: Radiopharmaceuticals for single-photon emission computed tomography brain imaging. In Seminars in nuclear medicine, vol. 33, no. 1, pp. 2 − 13. WB Saunders (2003, January)

    Google Scholar 

  45. Brooks, D.J., Seppi, K., Neuroimaging Working Group on MSA.: Proposed neuroimaging criteria for the diagnosis of multiple system atrophy. Movem. Disord. 24(7), 949 − 964 (2009)

    Google Scholar 

  46. Yoshita, M.: Cardiac uptake of [123I]MIBG separates PD from multiple system atrophy. Neurology 54, 1877–1878 (2000)

    Article  Google Scholar 

  47. Heim, B., Krismer, F., De Marzi, R., Seppi, K.: Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J. Neural Trans. 124(8), 915–964 (2017)

    Article  Google Scholar 

  48. Hotter, A., Esterhammer, R., Schocke, M.F., Seppi, K.: Potential of advanced MR imaging techniques in the differential diagnosis of parkinsonism. Mov. Disord. Off. J. Mov. Disord. Soc. 24(Suppl 2), S711–S720 (2009)

    Article  Google Scholar 

  49. Mahlknecht, P., Hotter, A., Hussl, A., Esterhammer, R., Schocke, M., Seppi, K.: Significance of MRI in diagnosis and differential diagnosis of Parkinson’s disease. Neurodeg. Dis. 7(5), 300–318 (2010)

    Article  Google Scholar 

  50. Riederer, P.: Time course of nigrostriatal degeneration in Parkinson’s disease. J. Neural. Transm. 38(3–4), 277–301 (1976)

    Article  Google Scholar 

  51. Brooks, D.J.: Morphological and functional imaging studies on the diagnosis and progression of Parkinson’s disease. J. Neurol. 247(2), II11 − II18 (2000)

    Google Scholar 

  52. Marino, S., Ciurleo, R., Di Lorenzo, G., Barresi, M., De Salvo, S., Giacoppo, S., … Bramanti, P.: Magnetic resonance imaging markers for early diagnosis of Parkinson’s disease. Neural Regenerat. Res. 7(8), 611 (2012)

    Google Scholar 

  53. Seppi, K., Schocke, M.F.H., Esterhammer, R., Kremser, C., Brenneis, C., Mueller, J., … Wenning, G.K.: Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 60(6), 922 − 927 (2003)

    Google Scholar 

  54. Chung, E.J., Kim, E.G., Bae, J.S., Eun, C.K., Lee, K.S., Oh, M., Kim, S.J.: Usefulness of diffusion-weighted MRI for differentiation between Parkinson’s disease and Parkinson variant of multiple system atrophy. J. Movem. Disord. 2(2), 64 (2009)

    Article  Google Scholar 

  55. Borghammer, Per, Karoline Knudsen, Tatyana D. Fedorova, David J. Brooks.: Imaging Parkinson’s disease below the neck. npj Parkinson’s Dis. 3(1), 1 − 10 (2017)

    Google Scholar 

  56. Johnson, J.M., Kellogg Jr., D.L.: Local thermal control of the human cutaneous circulation. J. Appl. Physiol. 109(4), 1229–1238 (2010)

    Article  Google Scholar 

  57. Nolano, M., Provitera, V., Estraneo, A., Selim, M. M., Caporaso, G., Stancanelli, A., … Santoro, L.:. Sensory deficit in Parkinson’s disease: evidence of a cutaneous denervation. Brain, 131(7), 1903 − 1911 (2008)

    Google Scholar 

  58. Shindo, K., Iida, H., Watanabe, H., Ohta, E., Nagasaka, T., Shiozawa, Z.: Sympathetic sudomotor and vasoconstrictive neural function in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 14(7), 548–552 (2008)

    Article  Google Scholar 

  59. Donadio, V., Incensi, A., Leta, V., Giannoccaro, M.P., Scaglione, C., Martinelli, P., … Liguori, R.: Skin nerve α-synuclein deposits: a biomarker for idiopathic Parkinson disease. Neurology 82(15), 1362 − 1369 (2014)

    Google Scholar 

  60. Wang, N., Gibbons, C.H., Lafo, J., Freeman, R.: α-Synuclein in cutaneous autonomic nerves. Neurology 81(18), 1604–1610 (2013)

    Article  Google Scholar 

  61. Akaogi, Y., Asahina, M., Yamanaka, Y., Koyama, Y., Hattori, T.: Sudomotor, skin vasomotor, and cardiovascular reflexes in 3 clinical forms of Lewy body disease. Neurology 73(1), 59–65 (2009)

    Article  Google Scholar 

  62. Pauling, J.D., Flower, V., Shipley, J.A., Harris, N.D., McHugh, N.J.: Influence of the cold challenge on the discriminatory capacity of the digital distal–dorsal difference in the thermographic assessment of Raynaud’s phenomenon. Microvasc. Res. 82(3), 364–368 (2011)

    Article  Google Scholar 

  63. Ring, E.F.J., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Measurem. 33(3), R33 (2012)

    Article  Google Scholar 

  64. Asahina, M., Low, D.A., Mathias, C.J., Fujinuma, Y., Katagiri, A., Yamanaka, Y., …, Kuwabara, S.: Skin temperature of the hand in multiple system atrophy and Parkinson’s disease. Parkins. Rel. Disord. 19(5), 560 − 562 (2013)

    Google Scholar 

  65. Purup, M.M., Knudsen, K., Karlsson, P., Terkelsen, A.J., Borghammer, P.: Skin temperature in parkinson’s disease measured by infrared thermography. Parkinson’s Disease (2020)

    Google Scholar 

  66. Braak, H., Del Tredici, K., Rüb, U., De Vos, R.A., Steur, E.N.J., Braak, E.: Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24(2), 197–211 (2003)

    Article  Google Scholar 

  67. Reichmann, H., Brandt, M.D., Klingelhoefer, L.: The nonmotor features of Parkinson’s disease: pathophysiology and management advances. Curr. Opin. Neurol. 29(4), 467–473 (2016)

    Article  Google Scholar 

  68. Delea, T.E., Thomas, S.K., Hagiwara, M.: The association between Adherence to Levodopa/Carbidopa/Entacapone therapy and healthcare utilization and costs among patients with Parkinson’s disease. CNS Drugs 25(1), 53–66 (2011)

    Article  Google Scholar 

  69. Davis, K.L., Edin, H.M., Allen, J.K.: Prevalence and cost of medication nonadherence in Parkinson’s disease: evidence from administrative claims data. Movem. Disord. 25(4), 474–480 (2010)

    Article  Google Scholar 

  70. Pagano, G., Niccolini, F., Politis, M.: Imaging in Parkinson’s disease. Clin. Med. 16(4), 371 (2016)

    Article  Google Scholar 

  71. Mhyre, T.R., Boyd, J.T., Hamill, R.W., Maguire-Zeiss, K.A.: Parkinson’s disease. Sub-Cell. Biochem. 65, 389–455 (2012). https://doi.org/10.1007/978-94-007-5416-4_16

    Article  Google Scholar 

  72. Meade, R.M., Fairlie, D.P., Mason, J.M.: Alpha-synuclein structure and Parkinson’s disease–lessons and emerging principles. Molec. Neurodegen. 14(1), 1–14 (2019)

    Article  Google Scholar 

  73. Pagan, F.L.: Improving outcomes through early diagnosis of Parkinson’s disease. Am. J. Manag. Care 18(7), S176 (2012)

    Google Scholar 

  74. Lang, A.E.: A critical appraisal of the premotor symptoms of Parkinson’s disease: potential usefulness in early diagnosis and design of neuroprotective trials. Movem. Disord. 26(5), 775–783 (2011)

    Article  Google Scholar 

  75. Hagan, J.J., Leslie, R.A., Patel, S., Evans, M.L., Wattam, T.A., Holmes, S., et al.: Orexin a activates locus coeruleus cell firing and increases arousal in the rat. Proc. Nat. Acad. Sci. U.S.A. 96, 10911–10916. (1999). https://doi.org/10.1073/pnas.96.19.10911

  76. Jain, S.: Multi-organ autonomic dysfunction in Parkinson disease. Parkins. Relat. Disord. 17(2), 77–83 (2011)

    Article  Google Scholar 

  77. Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W.: Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 351 COI, 1, 2498 − 2508 (2004)

    Google Scholar 

  78. Stocchi, F., Rascol, O., Kieburtz, K., Poewe, W., Jankovic, J., Tolosa, E., … Olanow, C.W.: Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE‐PD study. Annal. Neurol. 68(1), 18 − 27 (2010)

    Google Scholar 

  79. Rascol, O., Brooks, D.J., Korczyn, A.D., De Deyn, P.P., Clarke, C.E., Lang, A.E.: A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. New Engl. J. Med. 342(20), 1484–1491 (2000)

    Article  Google Scholar 

  80. Whone, A.L., Watts, R.L., Stoessl, A.J., Davis, M., Reske, S., Nahmias, C., …, REAL‐PET study group.: Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL‐PET study. Ann. Neurol. 54(1), 93 − 101 (2003)

    Google Scholar 

  81. Parkinson Study Group: Pramipexole vs levodopa as initial treatment for Parkinson disease: a randomized controlled trial. JAMA 284(15), 1931–1938 (2000)

    Article  Google Scholar 

  82. Parkinson Study Group: Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 287(13), 1653–1661 (2002)

    Article  Google Scholar 

  83. Stowe, R., Ives, N., Clarke, C.E., Ferreira, J., Hawker, R.J., Shah, L., …, Gray, R.: Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst. Rev. (2) (2008)

    Google Scholar 

  84. Ives, N.J., Stowe, R.L., Marro, J., Counsell, C., Macleod, A., Clarke, C.E., …, Wheatley, K.: Monoamine oxidase type B inhibitors in early Parkinson’s disease: meta-analysis of 17 randomised trials involving 3525 patients. BMJ 329(7466), 593 (2004)

    Google Scholar 

  85. Parkinson Study Group: Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. New England J. Med. 328(3), 176–183 (1993)

    Article  Google Scholar 

  86. Siderowf, Andrew., Stern, Matthew., Shoulson, Ira., Kieburtz, Karl., Oakes, David., Day, Denni., Shinaman, Aileen., et al.: A controlled trial of rasagiline in early Parkinson disease: the TEMPO study. Arch. Neurol. 59(12), 1937–1943 (2002)

    Article  Google Scholar 

  87. Olanow, C.W., Rascol, O., Hauser, R., Feigin, P.D., Jankovic, J., Lang, A., …, Tolosa, E.: A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. New England J. Med. 361(13), 1268 − 1278 (2009)

    Google Scholar 

  88. Rascol, O., Fitzer-Attas, C.J., Hauser, R., Jankovic, J., Lang, A., Langston, J.W., …, Olanow, C.W.: A double-blind, delayed-start trial of rasagiline in Parkinson’s disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes. The Lancet Neurol. 10(5), 415 − 423 (2011)

    Google Scholar 

  89. Hauser, R.A., Lew, M.F., Hurtig, H.I., Ondo, W.G., Wojcieszek, J., Fitzer‐Attas, C.J., TEMPO Open‐label Study Group.: Long‐term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Movem. Disord. 24(4), 564 − 573 (2009)

    Google Scholar 

  90. Fu, J.F., Klyuzhin, I., McKenzie, J., Neilson, N., Shahinfard, E., Dinelle, K., … Sossi, V.: Joint pattern analysis applied to PET DAT and VMAT2 imaging reveals new insights into Parkinson’s disease induced presynaptic alterations. NeuroImage Clin. 23, 101856 (2019)

    Google Scholar 

  91. Pavese, N., Evans, A.H., Tai, Y.F., Hotton, G., Brooks, D.J., Lees, A.J., Piccini, P.: Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67(9), 1612–1617 (2006)

    Article  Google Scholar 

  92. Sargent, P.A., Kjaer, K.H., Bench, C.J., Rabiner, E.A., Messa, C., Meyer, J., … Cowen, P.J.: Brain serotonin1A receptor binding measured by positron emission tomography with [11C] WAY-100635: effects of depression and antidepressant treatment. Arch. Gen. Psyc. 57(2), 174 − 180 (2000)

    Google Scholar 

  93. Politis, M., Wu, K., Loane, C., Kiferle, L., Molloy, S., Brooks, D.J., Piccini, P.: Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol. Dis. 40(1), 216–221 (2010)

    Article  Google Scholar 

  94. Kerenyi, L., Ricaurte, G.A., Schretlen, D.J., McCann, U., Varga, J., Mathews, W.B., … Szabo, Z.: Positron emission tomography of striatal serotonin transporters in Parkinson disease. Arch. Neurol. 60(9), 1223 − 1229 (2003)

    Google Scholar 

  95. Koepp, M.J., Duncan, J.S.: PET: opiate neuroreceptor mapping. Adv. Neurol. 83, 145–156 (2000)

    Google Scholar 

  96. Haber, S.N., Watson, S.J.: The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 14(4), 1011–1024 (1985)

    Article  Google Scholar 

  97. Fernandez, A., de Ceballos, M.L., Jenner, P., Marsden, C.D.: Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson’s disease patients. Neuroscience 61(1), 73–79 (1994)

    Article  Google Scholar 

  98. Ouchi, Y., Yoshikawa, E., Sekine, Y., Futatsubashi, M., Kanno, T., Ogusu, T., Torizuka, T.: Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 57(2), 168–175 (2005)

    Article  Google Scholar 

  99. Ouchi, Y., Yagi, S., Yokokura, M., Sakamoto, M.: Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Rel. Disord. 15(Suppl 3), S200–S204 (2009)

    Article  Google Scholar 

  100. Gerhard, A., Pavese, N., Hotton, G., Turkheimer, F., Es, M., Hammers, A., Eggert, K., Oertel, W., Banati, R.B., Brooks, D.J.: In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21(2), 404–412 (2006)

    Article  Google Scholar 

  101. Druschky, A., Hilz, M.J., Platsch, G., Radespiel-Troger, M., Druschky, K., Kuwert, T., Neundorfer, B.: Differentiation of Parkinson_s disease and multiple system atrophy in early disease stages by means of I-123- MIBG-SPECT. J. Neurol. Sci. 175, 3–12 (2000)

    Article  Google Scholar 

  102. Reinhardt, M.J., Jungling, F.D., Krause, T.M., Braune, S.: Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake. Eur. J. Nucl. Med. 27, 595–600 (2000)

    Article  Google Scholar 

  103. Courbon, F., Brefel-Courbon, C., Thalamas, C., Alibelli, M.J., Berry, I., Montastruc, J.L., Rascol, O., Senard, J.M.: Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson_s disease. Mov. Disord. 18, 890–897 (2003)

    Article  Google Scholar 

  104. Satoh, A., Serita, T., Seto, M., Tomita, I., Satoh, H., Iwanaga, K., Takashima, H., Tsujihata, M.: Loss of 123I-MIBG uptake by the heart in Parkinson_s disease: assessment of cardiac sympathetic denervation and diagnostic value. J. Nucl. Med. 40, 371–375 (1999)

    Google Scholar 

  105. Braune, S., Reinhardt, M., Schnitzer, R., Riedel, A., Lucking, C.H.: Cardiac uptake of [123I]MIBG separates Parkinson_s disease from multiple system atrophy. Neurology 53, 1020–1025 (1999)

    Article  Google Scholar 

  106. Yoshita, M.: Differentiation of idiopathic Parkinson_s disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 meta-iodobenzylguanidine myocardial scintigraphy. J. Neurol. Sci. 155, 60–67 (1998)

    Article  Google Scholar 

  107. Hirayama, M., Hakusui, S., Koike, Y., Ito, K., Kato, T., Ikeda, M., Hasegawa, Y., Takahashi, A.: A scintigraphical qualitative analysis of peripheral vascular sympathetic function with meta-[123I]iodobenzylguanidine in neurological patients with autonomic failure. J. Auton. Nerv. Syst. 53, 230–234 (1995)

    Article  Google Scholar 

  108. Becker, G., Berg, D., Lesch, K.P., Becker, T.: Basal limbic system alteration in major depression: a hypothesis supported by transcranial sonography and MRI findings. Int. J. Neuropsychopharmacol. 4, 21–31 (2001)

    Article  Google Scholar 

  109. Berg, D., Supprian, T., Hofmann, E., Zeiler, B., Jager, A., Lange, K.W., Reiners, K., Becker, T., Becker, G.: Depression in Parkinson_s disease: brainstem midline alteration on transcranial sonography and magnetic resonance imaging. J. Neurol. 246, 1186–1193 (1999)

    Article  Google Scholar 

  110. Wijeratne, T., Grisold, W., Trenkwalder, C., Carroll, A.M.W.: World brain day 2020: move together to end Parkinson’s disease. J. Neurol. Sci. 416, 116996 (2020)

    Google Scholar 

  111. Krüger, R., Klucken, J., Weiss, D., Tönges, L., Kolber, P., Unterecker, S., … Riederer, P.: Classification of advanced stages of Parkinson’s disease: translation into stratified treatments. J. Neural Trans. 124(8), 1015 − 102 (2017)

    Google Scholar 

  112. Pfeiffer, R.F.: Non-motor symptoms in Parkinson’s disease. Parkinsonism Rel. Disord. 22, S119–S122 (2016)

    Article  Google Scholar 

  113. Massano, J., Bhatia, K.P.: Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harbor Persp. Med. 2(6), (2012)

    Google Scholar 

  114. Pyatigorskaya, N., Gallea, C., Garcia-Lorenzo, D., Vidailhet, M., Lehericy, S.: A review of the use of magnetic resonance imaging in Parkinson’s disease. Therap. Adv. Neurol. Disord. 7(4), 206–220 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karnam Anantha Sunitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brindha, A., Sunitha, K.A., Venkatraman, B., Menaka, M., Arjunan, S.P. (2022). Diagnosis of Parkinson Disease: Imaging and Non-Imaging Techniques. In: Arjunan, S.P., Kumar, D.K. (eds) Techniques for Assessment of Parkinsonism for Diagnosis and Rehabilitation. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3056-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3056-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3055-2

  • Online ISBN: 978-981-16-3056-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics