Skip to main content

Managing Interstitial Lung Diseases with Computer-Aided Visualization

  • Chapter
  • First Online:
Hybrid Artificial Intelligence and IoT in Healthcare

Abstract

Pulmonary interstitial pathology and subsequent diagnosis represent a significant component of pulmonary medical practice [97.9/100000 cases]. Complexity in differential diagnosis is added due to the individual pathological entities’ low prevalence, very similar imaging aspects and individual variations. Current approaches almost always require a multi-disciplinary approach, on a case-by-case basis, with a team of high expertise and experienced medical practitioners. Moreover, human diagnosis error rate is unsuitably high (~20–30%) (Trusculescu et al. in European Radiology 30:6285–6292, 2020), with severe consequences for the patient’s evolution and prognosis. High-resolution computer imaging together with biopsy form the diagnosis foundation, yet often the biopsy is absent, creating the need for accurate diagnosis based solely on visualization. Recent years have proven that a mixture of computer enhancements and medical expertise are a synergistic and precise approach. Computer techniques span two categories: learning and discovery, each working either supervised or unsupervised; however, their output is largely data-centric. A more novel tactic is using visual aids in which data is processed and abstracted in the background, providing helpful hints and concentrated information to allow autonomous human conclusions. The valid and flexible modeling of diffuse interstitial lung diseases (DILD) is especially important in idiopathic pulmonary fibrosis (IPF), in which the accepted computer tomography diagnosis criteria allow extremely diverse individual variations. Current advances strictly structure the criteria, yet the four categories: typical, probable, indeterminate and most consistent with non-UIP (usual interstitial pneumonia) span a vast pattern array. Since IPF has such a dire prognosis (76, 8% mortality rate at 3 years), the need for good pattern recognition and discovery is imperative to allow proper patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEP:

Acute eosinophilic pneumonia

AIP:

Acute interstitial pneumonia

BAL:

Bronchoalveolar lavage

CAD:

Computer-aided diagnosis

CEP:

Chronic eosinophilic pneumonia

COP:

Cryptogenic organizing pneumonia

CTD:

Connective tissue disease

DILD:

Diffuse interstitial lung disease

DIP:

Desquamative interstitial pneumonia

EBB:

Endobronchial biopsy

EBUS–TBNA:

Endobronchial ultrasound with transbronchial needle aspiration

HP:

Hypersensitivity pneumonia

HRCT:

High-resolution computer tomography

HSP:

Hypersensitivity pneumonia

GERD:

Gastroesophageal reflux disease

IT:

Information technology

IIP:

Interstitial idiopathic pneumonia

ILD:

Interstitial lung disease

IPF:

Idiopathic pulmonary fibrosis

LAM:

Lymphangioleiomyomatosis

LIP:

Lymphoid interstitial pneumonia

MDD:

Multi-disciplinary discussion

NSIP:

Idiopathic non-specific interstitial pneumonia

PAH:

Pulmonary arterial hypertension

PLCH:

Pulmonary langerhans cell histiocytosis

PPFE:

Pleuroparenchymal fibroelastosis

RBILD:

Respiratory bronchiolitis interstitial lung disease

SLB:

Surgical lung biopsy

SPL:

Secondary pulmonary lobule

TBLB:

Transbronchial lung biopsy

TBLC:

Transbronchial lung cryobiopsy

UIIP:

Unclassifiable idiopathic interstitial pneumonia

UIP:

Usual interstitial pneumonia

VEGF-D:

Vascular endothelial growth factor D

References

  1. Trusculescu, A. A., Manolescu, D., Tudorache, E., & Oancea, C. (2020). Deep learning in interstitial lung disease—how long until daily practice. European Radiology, 30(11), 6285–6292. https://doi.org/10.1007/s00330-020-06986-4

    Article  Google Scholar 

  2. Collard Harold R and King Jr Talmadge E, Diffuse Lung Disease. A Practical Approach, Robert P. Baughman and Roland M. du Bois, Eds., 2012.

    Google Scholar 

  3. Du Bois, R. M., Egan, J. J., & Costabel, U. (2007). Diffuse parenchymal lung disease. In C. T. Bolliger (Ed.), Progress in respiratory research (vol. 36). Karger.

    Google Scholar 

  4. Mikolasch Theresia, A., Garthwaite Helen, S., & Porter Joanna, C. (2017). Update in diagnosis and management of interstitial lung disease. Clinical Medicine (London, England), 17(2), 146–153. https://doi.org/10.7861/clinmedicine.17-2-146

    Article  Google Scholar 

  5. Guo, B., Wang, L., Xia, S., & Mao, M. (2020). The interstitial lung disease spectrum under a uniform diagnostic algorithm: a retrospective study of 1,945 individuals. Journal of Thoracic Disease, 12. https://doi.org/10.21037/jtd-19-4021.

  6. Ley, B., et al. (2015). Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. European Respiratory Journal, 1374–1381. https://doi.org/10.1183/09031936.00146314.

  7. Nakamura, H., & Aoshiba, K., (Eds.) (2016). Idiopathic pulmonary fibrosis. Advances in diagnostic tools and disease management. Springer. https://doi.org/10.1007/978-4-431-55582-7.

  8. Desai, S. R., & Galvin, J. R. (2015). Plain film and HRCT diagnosis of interstitial lung disease. In J. Hodler, R. A. Kubik-Huch, & G. K. von Schulthess (Eds.), Diseases of the chest, breast, heart and vessels 2019–2022: Diagnostic and interventional imaging [Internet] (pp. 2019–2020). Springer.

    Google Scholar 

  9. Kondoh, Y., Johkoh, T., Fukuoka, J., et al. (2015). Broader criteria of undifferentiated connective tissue disease in idiopathic interstitial pneumonias. Respiratory Medicine, 109(3), 389–396.

    Article  Google Scholar 

  10. Fan, L. L., Deterding, R. R., & Langston, C. (2004). Pediatric interstitial lung disease revisited. Pediatr Pulmonol, 38, 369–378.

    Google Scholar 

  11. Collard, H. R., Egan, J. J., Raghu, G., et al. (2011). An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. American Journal of Respiratory and Critical care Medicine, 183(6), 788–824.

    Google Scholar 

  12. Calandriello, L., Sverzellati, N., Walsh, S. L., et al. (2016) Interobserver agreement for the ATS/ERS/JRS/ALAT criteria for a UIP pattern on CT. THORAX, 71, 45–51.

    Google Scholar 

  13. Nicholson, A. G., et al. (2004). Inter-observer variation between pathologists in diffuse parenchymal lung disease. THORAX, 59, 500–5. https://doi.org/10.1136/thx.2003.011734.

  14. Raghu, G., Remy-Jardin, M., Myers, J. L., et al. (2018). Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 198(5), e44–e68. https://doi.org/10.1164/rccm.201807-1255ST

    Article  Google Scholar 

  15. d’Alessandro M. et al. (2020). Galactin-1, 3 and 9: Potential biomarkers in idiopathic pulmonary fibrosis and other interstitial lung diseases. Respiratory Physiology & Neurobiology. https://doi.org/10.1016/j.resp.2020.103546.

  16. Masuo, M., Nukui, Y., Tateishi, T., Kishino, M., Tateishi, U., Morota, K., Ohbo, K., Miyazaki, Y., & Nishiyama, N. (2020). Human epididymis protein 4 is a new biomarker to predict the prognosis of progressive fibrosing interstitial lung disease. Respiratory Investigation. https://doi.org/10.1016/j.resinv.2020.08.002.

  17. Society American Thoracic and Society European Respiratory. (2000). Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). American Journal of Respiratory and Critical Care Medicine, 161(21), 646–664. https://doi.org/10.1164/ajrccm.161.2.ats3-00

    Article  Google Scholar 

  18. Hunninghake, G. W., Zimmerman, M. B., Schwartz, D. A., et al. (2001). Utility of a lung biopsy for the diagnosis of idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 164(2), 193–196. https://doi.org/10.1164/ajrccm.164.2.2101090

    Article  Google Scholar 

  19. Wells, A., et al. (1998). Clinical usefulness of high resolution computed tomography in cryptogenic fibrosing alveolitis. Thorax, 53, 1080–1087.

    Article  Google Scholar 

  20. Edey, A. D., Devaraj, A. A., Barke, R. P., et al. (2011). Fibrotic idiopathic interstitial pneumonias: HRCT findings that predict mortality. European Radiology, 21, 1586–1593.

    Article  Google Scholar 

  21. Goh, N. S., Desai, S. R., Veeraraghavan, S., et al. (2008). Interstitial lung disease in systemic sclerosis: a simple staging system. American Journal of Respiratory and Critical Care Medicine, 177, 1248–1254.

    Article  Google Scholar 

  22. Wells, A. U., Sverzellati, N., Walsh, S. L., et al. (2014). An integrated clinicoradiological staging system for pulmonary sarcoidosis: a case-cohort study. The Lancet Respiratory Medicine, 2, 123–30.

    Google Scholar 

  23. Wells, A. U., & Antoniou, K. M. (2014). The prognostic value of the GAP model in chronic interstitial lung disease: The quest for a staging system. Chest, 145, 672–674.

    Article  Google Scholar 

  24. Lynch, D. A., et al. (2018). Diagnostic criteria for idiopathic pulmonary fibrosis: A Fleischner society white paper. The Lancet Respiratory Medicine, 6(2), 138–152.

    Article  Google Scholar 

  25. Societatea Romană de Pneumologie and Grupul de lucru pentru Pneumopatii Intersțiale difuze și Sarcoidoză, “Ghid de diagnostic si tratament al pneumopatiilor interstitiale difuze, 2015.

    Google Scholar 

  26. An American Thoracic Society Pocket Publication. Guidelines for the Diagnosis and Management of Idiopathic Pulmonary Fibrosis: UPDATE 2019, 2019.

    Google Scholar 

  27. Maher, T. M., & Strek, M. E. (2019). Antifibrotic therapy for idiopathic pulmonary fibrosis: time to treat. Respiratory Research. https://doi.org/10.1186/s12931-019-1161-4.

  28. Montesi Sydney, B. (2020). Practice guidelines for interstitial lung diseases: Widening the reach. Lung India. https://doi.org/10.4103/lungindia.lungindia_487_20.

  29. Jacob. S. S. et al. (2020). Home oxygen therapy for adults with chronic lung disease. An official American thoracic society clinical practice guideline. American Journal of Respiratory and Critical Care Medicine, 202(10). https://doi.org/10.1164/rccm.202009-3608ST.

  30. De Oliveira, N. C., et al. (2012). Lung transplant for interstitial lung disease: Outcomes for single versus bilateral lung transplantation. Interactive Cardiovascular and Thoracic Surgery, 14(3), 236–267. https://doi.org/10.1093/icvts/ivr085

    Article  Google Scholar 

  31. Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10(3), 257–273.

    Article  Google Scholar 

  32. Armstrong, N., & Hilton, P. (2014). Doing diagnosis: Whether and how clinicians use a diagnostic tool of uncertain clinical utility. Social Science and Medicine, 120, 208–214.

    Google Scholar 

  33. Grote, T., & Berens, P. (2019). On the ethics of algorithmic decision-making in healthcare. Medical ethics, 46(3).

    Google Scholar 

  34. Wernick, M. N., Yang, Y., Brankov, J. G., Yourganov, G., & Strother, S. C. (2010). Machine learning in medical imaging. IEEE Signal Processing Magazine, 27(4), 25–38.

    Article  Google Scholar 

  35. Netto, S. M. B., Leite, V. R. C., Silva, A. C., de Paiva, A. C., & de Almeida Neto, A. (2008). Application on reinforcement learning for diagnosis based on medical image. In Reinforcement learning (pp. 379–398). IntechOpen.

    Google Scholar 

  36. Ker, J., Wang, L., Rao, J., & Lim, T. (2017). Deep learning applications in medical image analysis. IEEE Access, 6, 9375–9389.

    Article  Google Scholar 

  37. Yu, C., Liu, J., & Nemati, S. (2019). Reinforcement learning in healthcare: A survey. arXiv e-prints.

    Google Scholar 

  38. Chin, M., et al. (2018). Pulmonary artery size in interstitial lung disease and pulmonary hypertension: Association with interstitial lung disease severity and diagnostic utility. Frontiers in Cardiovascular Medicine, 5, 53.

    Article  Google Scholar 

  39. Hamzah, M. F. M., Kasim, R. M., Yunus, A., Rijal, O. M., & Noor, N. M. (2017). Detection of interstitial lung disease using correlation and regression methods on texture measure, In 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–4.

    Google Scholar 

  40. Taooka, Y., Takezawa, G., Ohe, M., Sutani, A., & Isobe, T. (2014). Multiple logistic regression analysis of risk factors in elderly pneumonia patients: QTc interval prolongation as a prognostic factor. Multidisciplinary Respiratory Medicine, 9(1).

    Google Scholar 

  41. Ayer, T., et al. (2010). Comparison of logistic regression and artificial neural network models in breast cancer risk estimation. Informatics in Radiology, 30(1), 13–22.

    Google Scholar 

  42. Jiang, F., Jiang, Y., Zhi, H., et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology, 2(4), 230–243.

    Google Scholar 

  43. Liu, C., Zhao, R., Xie, W., & Pang, M. (2020). Pathological lung segmentation based on random forest combined with deep model and multi-scale superpixels. Springer. https://doi.org/10.1007/s11063-020-10330-8.

  44. Sonnenberg, F. A., & Beck, J. R. (1993). Markov models in medical decision making: A practical guide. Medical Decision Making, 13(4), 322–338.

    Google Scholar 

  45. Kawamoto, R., et al. (2006). Application of hidden markov models and hidden semi-markov models to financial time series. Studies in Health Technology and Informatics, 192, 491–495.

    Google Scholar 

  46. Pikoula, M., et al. (2019). Identifying clinically important COPD sub-types using data-driven approaches in primary care population based electronic health records. BMC Medical Informatics and Decision Making, 19(1), 86.

    Article  Google Scholar 

  47. Powell, G. A., Verma, A., Luo, Y., Stephens, D., & Buckeridge, D. (2019). Modeling chronic obstructive pulmonary disease progression using continuous-time hidden markov models. Studies in Health Technology and Informatics, 264, 920–924.

    Google Scholar 

  48. Kwon, B. C. et al. (2020). DPVis: Visual analytics with hidden markov models for disease progression pathways. IEEE transactions on visualization and computer graphics.

    Google Scholar 

  49. Caron, M. (2020). Pulmonary function tests as surrogate markers of interstitial lung disease onset in systemic sclerosis. McGill University.

    Google Scholar 

  50. Ciompi, F., de Hoop, B., van Riel, S. J., et al. (2015). Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Medical Image Analysis, 26(1), 195–202.

    Article  Google Scholar 

  51. Tu, X., Xie, M., Gao, J., et al. (2017). Automatic categorization and scoring of solid, part-solid and non-solid pulmonary nodules in CT images with convolutional neural network. Scientific reports, 7(1), 8533.

    Google Scholar 

  52. Lopes, U. K., & Valiati, J. F. (2017). Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Computers in Biology and Medicine, 89, 135–143.

    Google Scholar 

  53. “Cicero, M., Bilbily, A., Colak, E., et al. (2017). Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs. Investigative Radiology, 52(5), 281–287.

    Google Scholar 

  54. Walsh, S. L. F., Calandriello, L., Silva, M., et al. (2018). Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: A case-cohort study. The Lancet Respiratory Medicine. Published online Sept 16. https://doi.org/10.1016/S2213-2600(18)3

  55. Anthimopoulos, M., Christodoulidis, S., Ebner, L., et al. (2016). Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Transactions on Medical Imaging, 35(5), 1207–1216

    Google Scholar 

  56. Gao, M., Bagci, U., Lu, L., et al. (2018). Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6(1), 1–6.

    Google Scholar 

  57. Li, Q., et al. (2014). Medical image classification with convolutional neural network. In 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844–848.

    Google Scholar 

  58. Li, Q., Cai, W., & Feng, D. D. (2013). Lung image patch classification with automatic feature learning. In 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6079–6082.

    Google Scholar 

  59. “Christodoulidis, S., Anthimopoulos, M., & Ebner, L., et al. (2017). Multi-source transfer learning with convolutional neural networks for lung pattern analysis. IEEE Journal of Biomedical and Health Informatics, 21(1), 76–84.

    Google Scholar 

  60. “Kim, G. B., Jung, K. H., Lee, Y., et al. (2018). Comparison of shallow and deep learning methods on classifying the regional pattern of diffuse lung disease. Journal of digital imaging, 31(4), 415–424.

    Google Scholar 

  61. “Soffer, S., Ben-Cohen, A., Shimon, O., et al. (2019). Convolutional neural networks for radiologic images: A radiologist’s guide. Radiology, 290(3), 590–606.

    Google Scholar 

  62. “LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep Learning. Nature 521(7553), 436–44.

    Google Scholar 

  63. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. Computer Vision and Pattern Recognition

    Google Scholar 

  64. Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: Management, analysis and future prospects. Journal of Big Data, 6

    Google Scholar 

  65. Weeks, J., & Pardee, R. (2019). Learning to share health care data: A brief timeline of influential common data models and distributed health data networks in U.S. health care research. The Journal for Electronic Health Data and Methods, 7(1), 4.

    Google Scholar 

  66. Ancusa, V., & Broasca, L. (2015). A method to pinpoint undiscovered links in genetic and protein networks. Studies in Health Technology and Informatics, 771–775.

    Google Scholar 

  67. Danese, M. D., Halperin, M., Duryea, J., & Duryea, R. (2019). The generalized data model for clinical research. BMC Medical Informatics and Decision Making, 19. (Online). https://doi.org/10.1186/s12911-019-0837-5

  68. Li, J., Chen, Q., & Liu, B. (2016). Classification and disease probability prediction via machine learning programming based on multi-GPU cluster MapReduce system. The Journal of Supercomputing, 73, 1782–1809.

    Article  Google Scholar 

  69. Kitsak, M., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6, 888–893.

    Article  Google Scholar 

  70. Vulliard, L., & Menche, J. (2020). Complex networks in health and disease. Systems Medicine, 26–33.

    Google Scholar 

  71. Goh, K.-I., et al. (2007). The human disease network. PNAS, 104(21), 8685–8690.

    Article  Google Scholar 

  72. Bean, D. M., Stringer, C., Beeknoo, N., Teo, J., & Dobson, R. J. (2017). Network analysis of patient flow in two UK acute care hospitals identifies key sub-networks for A&E performance. PLoS ONE, 12(10)

    Google Scholar 

  73. Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE, 9(6).

    Google Scholar 

  74. NetworkX developers. (2014). NetworkX network analysis in python. (Online). https://networkx.org/documentation/stable//reference/drawing.html

  75. McGuffin, M. J. (2012). Simple algorithms for network visualization: A tutorial. Tsinghua Science and Technology, 17(4), 383–398.

    Article  Google Scholar 

  76. Broasca, L., Ancusa, V. M., & Ciocarlie, H. (2019). A qualitative analysis on force directed network visualization tools in the context of large complex networks. In 23rd International Conference on System Theory, Control and Computing (ICSTCC).

    Google Scholar 

  77. Broască, L., Ancuşa, V., & Ciocârlie, H. (2016). Bioinformatics visualisation tools: An unbalanced picture. Studies in Health Technology and Informatics, 760–764.

    Google Scholar 

  78. Das, A. B. (2020). Lung disease network reveals the impact of comorbidity on SARS-CoV-2 infection. bioRxiv. https://doi.org/10.1101/2020.05.13.092577

  79. Raimundo, K., Chang, E., Broder, M. S., et al. (2016). Clinical and economic burden of idiopathic pulmonary fibrosis: a retrospective cohort study. BMC Pulmonary Medicine, 16, 2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Manolescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trușculescu, A., Broască, L., Ancușa, V.M., Manolescu, D., Tudorache, E., Oancea, C. (2021). Managing Interstitial Lung Diseases with Computer-Aided Visualization. In: Kumar Bhoi, A., Mallick, P.K., Narayana Mohanty, M., Albuquerque, V.H.C.d. (eds) Hybrid Artificial Intelligence and IoT in Healthcare. Intelligent Systems Reference Library, vol 209. Springer, Singapore. https://doi.org/10.1007/978-981-16-2972-3_12

Download citation

Publish with us

Policies and ethics