Skip to main content

Industrial Digitisation and Maintenance: Present and Future

  • Chapter
  • First Online:
Predictive Maintenance in Smart Factories

Abstract

In recent years various maintenance strategies have been adopted to maintain industrial equipment in an operational condition. Adopted techniques include approaches based on statistics generated by equipment manufacturers, human knowledge, and intuition based on experience among others. However, techniques like those mentioned above often address only a limited set of the potential root causes, leading to unexpected breakdown or failure. As a consequence, maintenance costs were considered a financial burden that each company had to sustain. Nevertheless, as technology advances, user experience and intuition are enhanced by artificial intelligence approaches, transforming maintenance costs into a company’s strategic asset. In particular, for manufacturing industries, a large volume of data is generated on a shop floor as digitisation advances. Combining information and communication technologies (ICT) with artificial intelligence techniques may create insight over production processes, complement or support human knowledge, revealing undetected anomalies and patterns that can help predict maintenance actions. Consequently, the company yields a reduction of unexpected breakdowns, production stoppages, and production costs. The outcomes are significant but selecting an appropriate data-driven method that can generate helpful and trustworthy results is challenging. It is mainly affected by the quality of the available data and the capability to understand the process under analysis correctly. This chapter reviews architectures for data management and data-driven methodologies for enabling predictive maintenance policies. Then follows the presentation of integrated solutions for predictive analytics to conclude with the main challenges identified and future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKinsey & Company, Fourth industrial revolution: beacons of technology and innovation in manufacturing, in World Economic Forum Annual Meeting (2019)

    Google Scholar 

  2. N.J. Boughton, I.C. ArokiamFirst, The application of cellular manufacturing: a regional small to medium enterprise perspective. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 214, 751 (2000)

    Google Scholar 

  3. Y. Xiang, Z. Zhu, D.W. Coit, Q. Feng, Condition-based maintenance under performance-based contracting, Comput. Ind. Eng. 111(C), 391 (2017)

    Google Scholar 

  4. P. Mehta, A. Werner, L. Mears, Condition based maintenance-systems integration and intelligence using Bayesian classification and sensor fusion. J. Intell. Manuf. 26(2), 331 (2015)

    Article  Google Scholar 

  5. S. Spiegel, F. Mueller, D. Wiesmann, J. Bird, Cost-sensitive learning for predictive maintenance (2018)

    Google Scholar 

  6. M. Soliman, Machine reliability and condition monitoring: a comprehensive guide to predictive maintenance planning, Book, ISBN-13 pp. 979–8557261,906 (2020)

    Google Scholar 

  7. J. Huang, J.X. You, H.C. Liu, M.S. Song, Failure mode and effect analysis improvement: a systematic literature review and future research agenda. Reliab. Eng. Syst. Safet 199, (2020)

    Google Scholar 

  8. C. et al, The SERENA European Project. https://serena-project.eu/ (2021). Accessed 05 Jan 2021

  9. G. Zou, K. Banisoleiman, A. Gonzźlez, M.H. Faber, Probabilistic investigations into the value of information: a comparison of condition-based and time-based maintenance strategies. Ocean Eng. 188, (2019). https://doi.org/10.1016/j.oceaneng.2019.106181. https://www.sciencedirect.com/science/article/pii/S0029801819303567

  10. O. Avalos-Rosales, F. Angel-Bello, A. Álvarez, Y. Cardona-Valdés, Including preventive maintenance activities in an unrelated parallel machine environment with dependent setup times. Comput. Ind Eng 123, 364 (2018)

    Article  Google Scholar 

  11. P. Rokhforoz, B. Gjorgiev, G. Sansavini, O. Fink, Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market. Reliab. Eng. Syst. Saf. 107495, (2021)

    Google Scholar 

  12. S. Werbińska-Wojciechowska, Delay-time-based maintenance modeling for technical systems–theory and practice. Adv Syst. Reliab. Eng. pp. 1–42 (2019)

    Google Scholar 

  13. M. Ghaleb, S. Taghipour, M. Sharifi, H. Zolfagharinia, Integrated production and maintenance scheduling for a single degrading machine with deterioration-based failures. Comp. Ind. Eng. 143, (2020)

    Google Scholar 

  14. K. Hendrickx, W. Meert, Y. Mollet, J. Gyselinck, B. Cornelis, K. Gryllias, J. Davis, A general anomaly detection framework for fleet-based condition monitoring of machines. Mech. Syst. Sig. Proc. 139, (2020)

    Google Scholar 

  15. K. Mykoniatis, A real-time condition monitoring and maintenance management system for low voltage industrial motors using internet-of-things. Proc. Manuf. 42, 450 (2020)

    Google Scholar 

  16. T. Mohanraj, S. Shankar, R. Rajasekar, N. Sakthivel, A. Pramanik, Tool condition monitoring techniques in milling process-a review. J. Mater. Res. Technol. 9(1), 1032 (2020)

    Article  Google Scholar 

  17. L. He, M. Xue, B. Gu, Internet-of-things enabled supply chain planning and coordination with big data services: certain theoretic implications. J. Manage. Sci. Eng. 5(1), 1 (2020)

    Article  Google Scholar 

  18. S. Bader, T. Barth, P. Krohn, R. Ruchser, L. Storch, L. Wagner, S. Findeisen, B. Pokorni, A. Braun, P. Ohlhausen, et al., Agile shopfloor organization design for industry 4.0 manufacturing. Proc. Manuf. 39, 756 (2019)

    Google Scholar 

  19. J. Wang, W. Zhang, Y. Shi, S. Duan, J. Liu, Industrial big data analytics: challenges, methodologies, and applications, arXiv preprint arXiv:1807.01016 (2018)

  20. A.C. Márquez, A. de la Fuente Carmona, J.A. Marcos, J. Navarro, Designing cbm plans, based on predictive analytics and big data tools, for train wheel bearings. Comput. Ind. 122, 103292 (2020)

    Google Scholar 

  21. M.C.M. Oo, T. Thein, An efficient predictive analytics system for high dimensional big data (J. King Saud Univ.-Comput. Inf, Sci, 2019)

    Book  Google Scholar 

  22. X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation-a review on the statistical data driven approaches. Eur. J. Operat. Res. 213(1), 1 (2011)

    Article  MathSciNet  Google Scholar 

  23. P. Dangeti, Statistics for Machine Learning (Packt Publishing Ltd. 2017)

    Google Scholar 

  24. O. Bousquet, S. Boucheron, G. Lugosi, Introduction to statistical learning theory, in Summer School on Machine Learning (Springer, 2003), pp. 169–207

    Google Scholar 

  25. R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori, M. Helu, Cloud-enabled prognosis for manufacturing. CIRP annals 64(2), 749 (2015)

    Article  Google Scholar 

  26. T. Zonta, C.A. da Costa, R. da Rosa Righi, M.J. de Lima, E.S. da Trindade, G.P. Li, Predictive maintenance in the industry 4.0: a systematic literature review. Comput. Ind. Eng. 106889 (2020)

    Google Scholar 

  27. T.P. Carvalho, F.A. Soares, R. Vita, R.d.P. Francisco, J.P. Basto, S.G. Alcalá, A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019)

    Google Scholar 

  28. C.M. Carbery, R. Woods, A.H. Marshall, A bayesian network based learning system for modelling faults in large-scale manufacturing, in 2018 IEEE International Conference on industrial technology (ICIT) (IEEE, 2018), pp. 1357–1362

    Google Scholar 

  29. Y. Guo, Y. Zhou, Z. Zhang, Fault diagnosis of multi-channel data by the cnn with the multilinear principal component analysis. Measurement 171, (2021)

    Google Scholar 

  30. A. Malhi, R. Yan, R.X. Gao, Prognosis of defect propagation based on recurrent neural networks. IEEE Trans. Inst. Measur. 60(3), 703 (2011)

    Article  Google Scholar 

  31. J. Zhang, P. Wang, R. Yan, R.X. Gao, Deep learning for improved system remaining life prediction. Procedia CIRP 72, 1033 (2018)

    Article  Google Scholar 

  32. A.K. Rout, P. Dash, R. Dash, R. Bisoi, Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach. J. King Saud Univ.-Comput. Inf. Sci. 29(4), 536 (2017)

    Article  Google Scholar 

  33. H. Yan, Y. Qin, S. Xiang, Y. Wang, H. Chen, Long-term gear life prediction based on ordered neurons LSTM neural networks. Measurement 165, (2020)

    Google Scholar 

  34. M. Sayah, D. Guebli, Z. Al Masry, N. Zerhouni, Robustness testing framework for rul prediction deep lstm networks, ISA transactions (2020)

    Google Scholar 

  35. W. Luo, T. Hu, Y. Ye, C. Zhang, Y. Wei, A hybrid predictive maintenance approach for CNC machine tool driven by digital twin. Robot. Comp.-Integ. Manufact. 65 (2020)

    Google Scholar 

  36. X. Bampoula, G. Siaterlis, N. Nikolakis, K. Alexopoulos, A deep learning model for predictive maintenance in cyber-physical production systems using lstm autoencoders, Sensors 21(3) (2021). https://doi.org/10.3390/s21030972. https://www.mdpi.com/1424-8220/21/3/972

  37. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, arXiv preprint arXiv:1706.03762 (2017)

  38. N. Wu, B. Green, X. Ben, S. O’Banion, Deep transformer models for time series forecasting: The influenza prevalence case, arXiv preprint arXiv:2001.08317 (2020)

  39. S. Jaskó, A. Skrop, T. Holczinger, T. Chován, J. Abonyi, Development of manufacturing execution systems in accordance with industry 4.0 requirements: A review of standard- and ontology-based methodologies and tools, Computers in Industry 123, 103300 (2020). https://doi.org/10.1016/j.compind.2020.103300. http://www.sciencedirect.com/science/article/pii/S0166361520305340

  40. R.S. Peres, A. Dionisio Rocha, P. Leitao, J. Barata, Idarts – towards intelligent data analysis and real-time supervision for industry 4.0, Computers in Industry 101, 138 (2018). https://doi.org/10.1016/j.compind.2018.07.004. http://www.sciencedirect.com/science/article/pii/S0166361517306759

  41. R.F. Babiceanu, R. Seker, Big data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook, Computers in Industry 81, 128 (2016). Emerging ICT concepts for smart, safe and sustainable industrial systems

    Google Scholar 

  42. I. Simonis, Container-based architecture to optimize the integration of microservices into cloud-based data-intensive application scenarios, in Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings (ACM, 2018), p. 34

    Google Scholar 

  43. A. Acquaviva, D. Apiletti, A. Attanasio, E. Baralis, L. Bottaccioli, T. Cerquitelli, S. Chiusano, E. Macii, Patti, Forecasting heating consumption in buildings: a scalable full-stack distributed engine, Electronics 8(5), 491 (2019). https://doi.org/10.3390/electronics8050491

  44. B. Xu, S.A. Kumar, Big data analytics framework for system health monitoring, in 2015 IEEE International Congress on Big Data (2015), pp. 401–408. http://orcid.org/10.1109/BigDataCongress.2015.66

  45. G.M. D’silva, A. Khan, Gaurav, S. Bari, Real-time processing of iot events with historic data using apache kafka and apache spark with dashing framework, in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT) (2017), pp. 1804–1809. http://orcid.org/10.1109/RTEICT.2017.8256910

  46. D. Apiletti, C. Barberis, T. Cerquitelli, A. Macii, E. Macii, M. Poncino, F. Ventura, istep, an integrated self-tuning engine for predictive maintenance in industry 4.0, in IEEE International Conference on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018, Melbourne, Australia, December 11-13, 2018 (2018), pp. 924–931

    Google Scholar 

  47. S. Panicucci, N. Nikolakis, T. Cerquitelli, F. Ventura, S. Proto, E. Macii, S. Makris, D. Bowden, P. Becker, N. O’Mahony, L. Morabito, C. Napione, A. Marguglio, G. Coppo, S. Andolina, A cloud-to-edge approach to support predictive analytics in robotics industry. Electronics 9(3), 492 (2020)

    Article  Google Scholar 

  48. M. Ribeiro, K. Grolinger, M.A.M. Capretz, Mlaas: Machine learning as a service, in 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA) (2015), pp. 896–902. https://doi.org/10.1109/ICMLA.2015.152

  49. Y. Jin, H. Lee, On-demand computation offloading architecture in fog networks, Electronics 8(10), 1076 (2019). https://doi.org/10.3390/electronics8101076

  50. Y. Yao, Z. Xiao, B. Wang, B. Viswanath, H. Zheng, B.Y. Zhao, Complexity vs. performance: Empirical analysis of machine learning as a service, in Proceedings of the ACM Internet Measurement Conference (IMC’17) (London, UK, 2017)

    Google Scholar 

  51. N. Nikolakis, R. Senington, K. Sipsas, A. Syberfeldt, S. Makris, On a containerized approach for the dynamic planning and control of a cyber - physical production system, Robotics and Computer-Integrated Manufacturing 64(December 2019), 101919 (2020). https://doi.org/10.1016/j.rcim.2019.101919

  52. J. Murphree, Machine learning anomaly detection in large systems, in 2016 IEEE AUTOTESTCON (2016), pp. 1–9

    Google Scholar 

  53. Y. Chen, F. Zhu, J. Lee, Data quality evaluation and improvement for prognostic modeling using visual assessment based data partitioning method. Computers in Industry 64(3), 214 (2013)

    Article  Google Scholar 

  54. M. Canizo, E. Onieva, A. Conde, S. Charramendieta, S. Trujillo, Real-time predictive maintenance for wind turbines using big data frameworks (2017). https://doi.org/10.1109/ICPHM.2017.7998308

  55. J. Dalzochio, R. Kunst, E. Pignaton, A. Binotto, S. Sanyal, J. Favilla, J. Barbosa, Machine learning and reasoning for predictive maintenance in industry 4.0: Current status and challenges, Computers in Industry 123, 103298 (2020). https://doi.org/10.1016/j.compind.2020.103298. http://www.sciencedirect.com/science/article/pii/S0166361520305327

  56. M.A. Djeziri, S. Benmoussa, E. Zio, Review on Health Indices Extraction and Trend Modeling for Remaining Useful Life Estimation (Springer International Publishing. Cham 183–223 (2020). https://doi.org/10.1007/978-3-030-42726-9_8

  57. C. Zhang, P. Lim, A.K. Qin, K.C. Tan, Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics, IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1 (2016)

    Google Scholar 

  58. S.A. Asmai, A.S.H. Basari, A.S. Shibghatullah, N.K. Ibrahim, B. Hussin, Neural network prognostics model for industrial equipment maintenance, in 2011 11th International Conference on Hybrid Intelligent Systems (HIS) (2011), pp. 635–640

    Google Scholar 

  59. I. Anagiannis, N. Nikolakis, K. Alexopoulos, Energy-based prognosis of the remaining useful life of the coating segments in hot rolling mill. Appl. Sci. (Switzerland) 10(19), 6827 (2020). https://doi.org/10.3390/app10196827. https://www.mdpi.com/2076-3417/10/19/6827

  60. Z. Huang, Z. Xu, X. Ke, W. Wang, Y. Sun, Remaining useful life prediction for an adaptive skew-wiener process model. Mech. Syst. Sig. Proc. 87, 294 (2017). https://doi.org/10.1016/j.ymssp.2016.10.027. http://www.sciencedirect.com/science/article/pii/S0888327016304423

  61. Z. Zhang, X. Si, C. Hu, Y. Lei, Degradation data analysis and remaining useful life estimation: a review on wiener-process-based methods. Eur. J. Operat. Res. 271(3), 775 (2018). https://doi.org/10.1016/j.ejor.2018.02.033. http://www.sciencedirect.com/science/article/pii/S0377221718301486

  62. D. Wang, K.L. Tsui, Brownian motion with adaptive drift for remaining useful life prediction: revisited, mechanical systems and signal processing 99, 691 (2018). https://doi.org/10.1016/j.ymssp.2017.07.015. http://www.sciencedirect.com/science/article/pii/S0888327017303771

  63. B. Wang, Y. Lei, N. Li, N. Li, A hybrid prognostics approach for estimating remaining useful life of rolling element bearings. IEEE Trans. Reliab. 69(1), 401 (2020). https://doi.org/10.1109/TR.2018.2882682

  64. J. Deutsch, D. He, Using deep learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst. Man Cybern. Syst. 48(1), 11 (2018). http://orcid.org/10.1109/TSMC.2017.2697842

  65. Y. Chen, G. Peng, Z. Zhu, S. Li, A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Appl. Soft Comput. 86, (2020). https://doi.org/10.1016/j.asoc.2019.105919. http://www.sciencedirect.com/science/article/pii/S1568494619307008

  66. A. Zhang, H. Wang, S. Li, Y. Cui, Z. Liu, G. Yang, J. Hu, Transfer learning with deep recurrent neural networks for remaining useful life estimation. Appl. Sci. 8(12) (2018). https://doi.org/10.3390/app8122416. https://www.mdpi.com/2076-3417/8/12/2416

  67. X. Li, W. Zhang, Q. Ding, Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab. Eng. Syst. Saf. 182, 208 (2019). https://doi.org/10.1016/j.ress.2018.11.011. http://www.sciencedirect.com/science/article/pii/S0951832018308299

  68. S. Zheng, K. Ristovski, A. Farahat, C. Gupta, Long short-term memory network for remaining useful life estimation, in 2017 IEEE International Conference on Prognostics and Health Management (ICPHM) (2017), pp. 88–95. https://doi.org/10.1109/ICPHM.2017.7998311

  69. J. Liu, Q. Li, W. Chen, Y. Yan, Y. Qiu, T. Cao, Remaining useful life prediction of pemfc based on long short-term memory recurrent neural networks. Int. J. Hydrogen Energy 44(11), 5470 (2019). https://doi.org/10.1016/j.ijhydene.2018.10.042. http://www.sciencedirect.com/science/article/pii/S0360319918332191. The 6th International Conference on Energy, Engineering and Environmental Engineering

  70. H. Liu, Z. Liu, W. Jia, X. Lin, S. Zhang, A novel transformer-based neural network model for tool wear estimation. Measur. Sci. Technol. 31(6), 065106 (2020). https://doi.org/10.1088/1361-6501/ab7282

  71. B. He, L. Liu, D. Zhang, Digital twin-driven remaining useful life prediction for gear performance degradation: a review. J. Comput. Inf. Sci. Eng. 1–70

    Google Scholar 

  72. T. Cerquitelli, D.J. Pagliari, A. Calimera, L. Bottaccioli, E. Patti, A. Acquaviva, M. Poncino, Manufacturing as a data-driven practice: methodologies, technologies, and tools. Proc. IEEE 109(4), 399 (2021). https://doi.org/10.1109/JPROC.2021.3056006

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the European project “SERENA—VerSatilE plug-and-play platform enabling REmote predictive mainteNAnce”  (Grant Agreement: 767561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Nikolakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ippolito, M., Nikolakis, N., Cerquitelli, T., O’Mahony, N., Makris, S., Macii, E. (2021). Industrial Digitisation and Maintenance: Present and Future. In: Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., Makris, S. (eds) Predictive Maintenance in Smart Factories. Information Fusion and Data Science. Springer, Singapore. https://doi.org/10.1007/978-981-16-2940-2_1

Download citation

Publish with us

Policies and ethics