Skip to main content

Reconfigurable Intelligent Surface (RIS)-Assisted Wireless Systems: Potentials for 6G and a Case Study

  • Conference paper
  • First Online:
Advances in Communication, Devices and Networking

Abstract

As one of the key technologies for deployment of future wireless networks, the state-of-the-art reconfigurable intelligent surfaces (RISs) have rapidly gained a massive interest among researchers. In a specific case study, we study the outage performance of RIS-aided wireless systems in the presence of non-orthogonal multiple access (NOMA) scheme. In particular, different power factors are allocated to users which belong to a dedicated group. We the derive the exact outage probability of two users in a group. Specifically, it is assumed that the RIS is placed between the source and the users and the far user has better performance under the assistance of RIS. We also provide a comparative analysis to investigate the effect of the main parameters on the outage performance of our proposed system, such as the number of tunable elements of the RIS, power allocation factors, target rates, and the average signal-to-noise ratio at the base station. By using Monte Carlo simulation, we verify our analytical results via simulations. Our main results reported in this paper show the positive effect once we deploy RISs for guaranteeing fairness among NOMA users in wireless systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basar E, Di Renzo M, De Rosny J, Debbah M, Alouini M, Zhang R (2019) Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7:116 753–116 773

    Google Scholar 

  2. Renzo MD et al (2019) Smart radio environments empoweblack by AI reconfigurable meta-surfaces: an idea whose time has come. EURASIP J Wirel Commun Netw 129

    Google Scholar 

  3. Wu Q, Zhang R (2020) Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun Mag 58(1):106–112

    Article  Google Scholar 

  4. Basar E, Renzo MD, de Rosny J, Debbah M, Alouini M-S, Zhang R (2019) Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7:116 753–116 773

    Google Scholar 

  5. Huang et al C (2019) Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends. arXiv:1911.12296

  6. Liu F et al (2018) Programmable metasurfaces: state of the art and prospects. In: proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS)

    Google Scholar 

  7. Yang H, Cao X, Yang F, Gao J, Xu S, Li M, Chen X, Zhao Y, Zheng Y, Sijia L (2016) A programmable metasurface with dynamic polarization, scattering and focusing control. Sci Rep 6(35692)

    Google Scholar 

  8. Liaskos C et al (2015) Design and development of software defined metamaterials for nanonetworks. IEEE Circuits Syst Mag 15(4):12–25. Fourthquarter

    Google Scholar 

  9. Liu X, Liu Y, Chen Y, Poor HV RIS enhanced massive non-orthogonal multiple access networks: deployment and passive beamforming design. IEEE J Sel Areas Commun. https://doi.org/10.1109/JSAC.2020.3018823

  10. Nemati M, Park J, Choi J (2020) RIS-assisted coverage enhancement in millimeter-wave cellular networks. IEEE Access 8:188171–188185

    Article  Google Scholar 

  11. Alexandropoulos GC, Vlachos E (2020) A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. In: ICASSP 2020 - 2020 IEEE international conference on acoustics, speech and signal processing (ICASSP). Barcelona, Spain, pp 9175–9179

    Google Scholar 

  12. C. H. et al (2019) Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun 18(8):4157–4170

    Google Scholar 

  13. Boulogeorgos AAA, Alexiou A (2020) “Ergodic capacity analysis of reconfigurable intelligent surface assisted wireless systems. IEEE 3rd 5G World Forum (5GWF). Bangalore, India, 395–400

    Google Scholar 

  14. Wu Q, Zhang R (2019) Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans Wirel Commun 18(11):5394–5409

    Article  Google Scholar 

  15. Guo H, Liang Y, Chen J, Larsson EG (2020) Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans Wirel Commun 19(5):3064–3076

    Article  Google Scholar 

  16. Chen J, Liang Y-C, Pei Y, Guo H (2019) Intelligent reflecting surface: a programmable wireless environment for physical layer security. IEEE Access 7:82 599–82 612

    Google Scholar 

  17. Guan X, Wu Q, Zhang R (2020) Intelligent reflecting surface assisted secrecy communication: is artificial noise helpful or not? IEEE Wirel Commun Lett 9(6):778–782

    Article  Google Scholar 

  18. Do D-T et al (2019) Wireless power transfer enabled NOMA relay systems: two SIC modes and performance evaluation. Telkomnika 17(6):2697–2703

    Google Scholar 

  19. Do D-T, Le C-B, Le A-T (2019) Cooperative underlay cognitive radio assisted NOMA: secondary network improvement and outage performance. Telkomnika 17(5):2147–2154

    Google Scholar 

  20. Li X, Li J, Liu Y, Ding Z, Nallanathan A (2020) Residual transceiver hardware impairments on cooperative NOMA networks. IEEE Trans Wirel Commun 19(1):680–695

    Article  Google Scholar 

  21. Li X, Li J, Li L (2020) Performance analysis of impaiblack SWIPT NOMA relaying networks over imperfect weibull channels. IEEE Syst J 14(1):669–672

    Article  Google Scholar 

  22. Li X, Liu M, Deng C, Mathiopoulos PT, Ding Z, Liu Y (2020) Full-duplex cooperative NOMA relaying systems with I/Q imbalance and imperfect SIC. IEEE Wirel Commun Lett 9(1):17–20

    Article  Google Scholar 

  23. Li Xingwang, Wang Qunshu, Peng Hongxing, Zhang Hui, Do Dinh-Thuan, Rabie Khaled M, Kharel Rupak, Cavalcante Charles C (2020) A unified framework for HS-UAV NOMA network: performance analysis and location optimization. IEEE Access 8:13329–13340

    Article  Google Scholar 

  24. Do D-T, Thi Nguyen T-T (2018) Exact outage performance analysis of amplify-and forward-aware cooperative NOMA. Telkomnika 16(5):1966-1973

    Google Scholar 

  25. Do D-T, Le C-B (2018) Exploiting outage performance of wireless powered NOMA. Telkomnika 16 (5):1907–1917

    Google Scholar 

  26. Zeng J et al (2018) Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G. IEEE Access 6:48268–48288

    Article  Google Scholar 

  27. Liu G, Wang Z, Hu J, Ding Z, Fan P (2019) Cooperative NOMA broadcasting/multicasting for low-latency and high-reliability 5G cellular V2X communications. IEEE Internet Things J 6(5):7828–7838

    Article  Google Scholar 

  28. Yang L, Yuan Y (2020) Secrecy outage probability analysis for RIS-assisted NOMA systems. Electron Lett 56(23):1254–1256

    Google Scholar 

  29. Elhattab M, Arfaoui MA, Assi C, Ghrayeb A Reconfigurable intelligent surface assisted coordinated multipoint in downlink NOMA networks. IEEE Commun Lett. https://doi.org/10.1109/LCOMM.2020.3029717

  30. Li Y, Jiang M, Zhang Q, Qin J Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2020.3032695

  31. Hou T, Liu Y, Song Z, Sun X, Chen Y, Hanzo L (2020) Reconfigurable intelligent surface aided NOMA networks. IEEE J Selected Areas Commun 38(11):2575–2588

    Article  Google Scholar 

  32. Do D-T (2020) Anh-Tu Le and Byung Moo Lee, “NOMA in cooperative underlay cognitive radio networks under imperfect SIC. IEEE Access 8:86180–86195

    Google Scholar 

  33. Yue X, Liu Y (2020) Performance analysis of intelligent reflecting surface assisted NOMA networks. arXiv

    Google Scholar 

  34. Boulogeorgos A-AA, Alexiou A (2020) Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying. IEEE Access 8:94463–94483

    Article  Google Scholar 

  35. Gradshteyn IS, Ryzhik IM (2000) Table of integrals, series and products, 6th edn. Academic Press, New York, NY, USA

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Bao Le .

Editor information

Editors and Affiliations

7 Appendix A

7 Appendix A

The outage probability \(P_{NU} \) can be further computed by

$$\begin{aligned} \begin{aligned} {P_{NU}} =&1 - \Pr \left( {{A^2} > {\varphi _1}\left( {\rho {{\left| {{h_I}} \right| }^2} + 1} \right) } \right) \\ =&1 - \int \limits _0^\infty {{f_{{{\left| {{h_I}} \right| }^2}}}\left( x \right) } \left[ {1 - {F_{{A^2}}}\left( {{\varphi _1}\left( {\rho x + 1} \right) } \right) } \right] dx\\ =&1 - \frac{1}{{{\Omega _{{h_I}}}}}\int \limits _0^\infty {{e^{ - \frac{x}{{{\Omega _{{h_I}}}}}}}} \left[ {1 - \sum \limits _{l = 0}^\infty {\frac{{{{\left( { - 1} \right) }^l}\varphi _1^{\frac{{a + l + 1}}{2}}}}{{l!\varGamma \left( {a + 1} \right) \left( {a + l + 1} \right) {b^{a + l + 1}}}}} {{\left( {\rho x + 1} \right) }^{\frac{{a + l + 1}}{2}}}} \right] dx\\ =&\sum \limits _{l = 0}^\infty {\frac{{{{\left( { - 1} \right) }^l}\varphi _1^{\frac{{a + l + 1}}{2}}}}{{l!{\Omega _{{h_I}}}\varGamma \left( {a + 1} \right) \left( {a + l + 1} \right) {b^{a + l + 1}}}}} \int \limits _0^\infty {{e^{ - \frac{x}{{{\Omega _{{h_I}}}}}}}{{\left( {\rho x + 1} \right) }^{\frac{{a + l + 1}}{2}}}} dx \end{aligned} \end{aligned}$$
(12)

Let \(t = \rho x + 1 \rightarrow \frac{{t - 1}}{\rho } = x \rightarrow \frac{1}{\rho }dt = dx\), \({P_{NU}}\) can be reformulated by

$$\begin{aligned} {P_{NU}} = \sum \limits _{l = 0}^\infty {\frac{{{{\left( { - 1} \right) }^l}\varphi _1^{\frac{{a + l + 1}}{2}}{e^{\frac{1}{{\rho {\Omega _{{h_I}}}}}}}}}{{l!{\Omega _{{h_I}}}\varGamma \left( {a + 1} \right) \left( {a + l + 1} \right) \rho {b^{a + l + 1}}}}} \int \limits _1^\infty {{e^{ - \frac{t}{{\rho {\Omega _{{h_I}}}}}}}{t^{\frac{{a + l + 1}}{2}}}} dt. \end{aligned}$$
(13)

Using [35, Eq. (3.381.3)], (13) can be reformulated by (14)

$$\begin{aligned} {P_{NU}} = \sum \limits _{l = 0}^\infty {\frac{{{{\left( { - 1} \right) }^l}\varphi _1^{\frac{{a + l + 1}}{2}}{{\left( {\rho {\Omega _{{h_I}}}} \right) }^{\frac{{a + l + 3}}{2}}}{e^{\frac{1}{{{\Omega _{{h_I}}}}}}}}}{{l!{\Omega _{{h_I}}}\varGamma \left( {a + 1} \right) \left( {a + l + 1} \right) \rho {b^{a + l + 1}}}}} \varGamma \left( {\frac{{a + l + 3}}{2},\frac{1}{{\rho {\Omega _{{h_I}}}}}} \right) . \end{aligned}$$
(14)

This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, CB., Do, DT., Sur, S.N. (2022). Reconfigurable Intelligent Surface (RIS)-Assisted Wireless Systems: Potentials for 6G and a Case Study. In: Dhar, S., Mukhopadhyay, S.C., Sur, S.N., Liu, CM. (eds) Advances in Communication, Devices and Networking. Lecture Notes in Electrical Engineering, vol 776. Springer, Singapore. https://doi.org/10.1007/978-981-16-2911-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2911-2_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2910-5

  • Online ISBN: 978-981-16-2911-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics