Skip to main content

Simulation Studies on Force Sensor Using PDMS Coated Fiber Bragg Grating for Robot-Assisted Surgery

  • Conference paper
  • First Online:
Optical and Wireless Technologies

Abstract

We investigate the performance of a cantilever-type force sensor based on PDMS-coated fiber Bragg gratings for robot-assisted surgical applications. The cross section area of PDMS matrix and the location of the FBG sensor inside it are optimized through simulations. The sensitivity of the proposed sensor is obtained to be around 0.5 mN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman N, Deaton NJ, Sheng J, Cheng SS, Desai JP (2019) Modular FBG Bending Sensor for Continuum Neurosurgical Robot. IEEE Robotics and Automation Letters 4(2):1424–1430

    Article  Google Scholar 

  2. Saccomandi P, Caponero MA, Polimadei A, Francomano M, Formica D, Accoto D, Schena E (2014) An MR-compatible force sensor based on FBG technology for biomedical application. In: 2014 36th annual international conference of the IEEE engineering in medicine and biology society, EMBC 2014. Institute of Electrical and Electronics Engineers Inc, pp. 5731–5734. https://doi.org/10.1109/EMBC.2014.6944929

  3. Park C, sub, Joo, K. I., Kang, S. W., & Kim, H. R. (2011) A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity. J Opt Soc Korea 15(4):329–334. https://doi.org/10.3807/JOSK.2011.15.4.329

  4. Niu L, Chan C, Wah K, Chen L (2015) Bent optical fiber Bragg grating embedded in pdms for vertical compression load sensor. In: Workshop on specialty optical fibers and their applications, OSA technical digest (online). Optical Society of America, 2015, paper WT4A.38

    Google Scholar 

  5. Yang R, Yu YS, Zhu CC, Xue Y, Chen C, Zhang XY, Sun HB (2015) PDMS-coated S-tapered fiber for highly sensitive measurements of transverse load and temperature. IEEE Sensors Journal 15(6):3429–3435. https://doi.org/10.1109/JSEN.2015.2388490

  6. Nedoma J, Fajkus M, Cubik J, Kepak S, Martinek R, Vanus J, Jaros R (2018) SMART medical polydimethylsiloxane for monitoring vital signs of the human body. In: 2018 IEEE 20th international conference on e-health networking, applications and services, Healthcom 2018. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/HealthCom.2018.8531190

  7. Onoufriou A, Kalli K, Pureur D, Mugnier A (2006) Fibre Bragg gratings. https://doi.org/10.1007/3-540-31770-86

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srijith Kanakambaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lakshmanan, D., Kanakambaran, S. (2022). Simulation Studies on Force Sensor Using PDMS Coated Fiber Bragg Grating for Robot-Assisted Surgery. In: Tiwari, M., Maddila, R.K., Garg, A.K., Kumar, A., Yupapin, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-16-2818-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2818-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2817-7

  • Online ISBN: 978-981-16-2818-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics