Skip to main content

A Review on Metaheuristic Techniques in Automated Cryptanalysis of Classical Substitution Cipher

  • Conference paper
  • First Online:
Data Engineering for Smart Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 238))

  • 719 Accesses

Abstract

Between the year 1993 and 2019, a considerable new and different metaheuristic optimization techniques have been presented in the literature for automated cryptanalysis of classical substitution cipher. This paper compares the performance of these new and different metaheuristic techniques. Three main comparison measures are considered to assess the performance of presented metaheuristics: efficiency, effectiveness, and success rate. To the best of author knowledge, first time this kind of review has been carried out. It is noteworthy that among the presented metaheuristics, the performance of genetic algorithm technique is best with respect to effectiveness and success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldreich O (2010) P, NP, and NP-completeness: the basics of computational complexity. Cambridge University Press, pp 1–183

    Google Scholar 

  2. Du KL, Swamy MNS (2016) Search and optimization by metaheuristics: techniques and algorithms inspired by nature, Birkhäuser, pp 1–434

    Google Scholar 

  3. Menezes AJ, Van Oorschot PC, Vanstone SA (1996) Handbook of applied cryptography. CRC press, pp 1–780

    Google Scholar 

  4. Stinson DR (2005) Cryptography: theory and practice. CRC press, pp 1–593

    Google Scholar 

  5. Castro JCH, Viñuela PI (2005) Evolutionary computation in computer security and cryptography. N Gener Comput 23(3):193–199

    Article  Google Scholar 

  6. Danziger M, Henriques MAA (2012) Computational intelligence applied on cryptology: a brief review. IEEE Lat Am Trans 10(3):1798–1810

    Article  Google Scholar 

  7. Awad WS, El-Alfy ESM (2015) Computational intelligence in cryptology. Improving information security practices through computational intelligence, vol 28, pp 1–17

    Google Scholar 

  8. Holden J (2017) The mathematics of secrets: Cryptography from caesar ciphers to digital encryption. Princeton University Press, pp 1–373

    Google Scholar 

  9. Jain A, Chaudhari NS (2019) An improved genetic algorithm and a new discrete cuckoo algorithm for solving the classical substitution cipher. Int J Appl Metaheuristic Comput (IJAMC) 10(2):109–130

    Article  Google Scholar 

  10. Bhateja AK, Bhateja A, Chaudhury S, Saxena PK (2015) Cryptanalysis of vigenere cipher using cuckoo search. Appl Soft Comput 26:315–324

    Article  Google Scholar 

  11. Forsyth WS, Safavi-Naini R (1993) Automated cryptanalysis of substitution ciphers. Cryptologia 17(4):407–418

    Article  Google Scholar 

  12. Matthews RA (1993) The use of genetic algorithms in cryptanalysis. Cryptologia 17(2):187–201

    Article  Google Scholar 

  13. Spillman R, Janssen M, Nelson B, Kepner M (1993) Use of a genetic algorithm in the cryptanalysis of simple substitution ciphers. Cryptologia 17(1):31–44

    Article  Google Scholar 

  14. Goldberg DE (2006) Genetic algorithms. Pearson Education India

    Google Scholar 

  15. Michalewicz Z (2013) Genetic algorithms+ data structures= evolution programs. Springer Science & Business Media

    Google Scholar 

  16. Gonzalez TF (Ed) (2007) Handbook of approximation algorithms and metaheuristics. CRC Press. https://doi.org/10.1201/9781420010749

  17. Kramer O (2017) Genetic algorithm essentials. Springer. https://doi.org/10.1007/978-3-319-52156-5

    Article  MATH  Google Scholar 

  18. Laguna M (2014) Scatter search. In: Search methodologies. Springer, Boston, MA, pp 119–141

    Google Scholar 

  19. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  20. Glover F, Laguna M (2013) Tabu Search. Handbook of combinatorial optimization. Springer, New York, pp 3261–3362

    Chapter  Google Scholar 

  21. Rego C, Alidaee B (eds) (2006) Metaheuristic optimization via memory and evolution: tabu search and scatter search. Springer Science & Business Media

    Google Scholar 

  22. Clark A (1998) Optimisation heuristics for cryptology, doctoral dissertation. Queensland University of Technology, Australia

    Google Scholar 

  23. Dimovski A, Gligoroski D (2003) Attack on the polyalphabetic substitution cipher using a parallel genetic algorithm. Swiss-Macedonian scientific cooperation trought SCOPES project

    Google Scholar 

  24. Garg P, Sherry AM (2005) Genetic algorithm & Tabu search attack on the mono-aiphanetic substitution cipher. Paradigm 9(1):106–109

    Article  Google Scholar 

  25. Verma AK, Dave M, Joshi RC (2007) Genetic algorithm and tabu search attack on the mono-alphabetic substitution cipher i adhoc networks. J Comput Sci

    Google Scholar 

  26. Omran SS, Al-Khalid AS, Al-Saady DM (2010) Using genetic algorithm to break a mono-alphabetic substitution cipher. In: 2010 IEEE conference on open systems (ICOS 2010). IEEE, pp 63–67

    Google Scholar 

  27. Mudgal PK, Purohit R, Sharma R, Jangir MK (2017) Application of genetic algorithm in cryptanalysis of mono-alphabetic substitution cipher. In: 2017 International conference on computing, communication and automation (ICCCA). IEEE, pp 400–405

    Google Scholar 

  28. Garici MA, Drias H (2005) Cryptanalysis of substitution ciphers using scatter Search. In LNCS proceedings of international work-conference on the interplay between natural and artificial computation 2005. LNCS Springer Heidelberg, pp 31–40

    Google Scholar 

  29. Giddy JP, Safavi-Naini R (1994) Automated cryptanalysis of transposition ciphers. Comput J 37(5):429–436

    Article  Google Scholar 

  30. Toemeh R, Arumugam S (2007) Breaking transposition cipher with genetic algorithm. Elektronika ir Elektrotechnika 79(7):75–78

    Google Scholar 

  31. Song J, Yang F, Wang M, Zhang H (2008). Cryptanalysis of transposition cipher using simulated annealing genetic algorithm. In: International symposium on intelligence computation and applications. Springer, Berlin, Heidelberg, pp 795–802

    Google Scholar 

  32. Muhajjar RA (2010) Use of genetic algorithm in the cryptanalysis of transposition ciphers. Basrah J Sci 28(1A english):49–57

    Google Scholar 

  33. Al-Khalid AS, Omran SS, Hammood DA (2013) Using genetic algorithms to break a simple transposition cipher. In: 6th International conference on information technology ICIT

    Google Scholar 

  34. Garg P (2009) Genetic algorithms, tabu search, and simulated annealing: a comparison between three approaches for the cryptanalysis of transposition cipher. J Theor Appl Inf Technol 5(4)

    Google Scholar 

  35. Mishra G, Kaur S (2015) Cryptanalysis of transposition cipher using hill climbing and simulated annealing. In: Proceedings of fourth international conference on soft computing for problem solving. Springer, New Delhi, pp 293–302

    Google Scholar 

  36. Spillman R (1993) Cryptanalysis of knapsack ciphers using genetic algorithms. Cryptologia 17(4):367–377

    Article  Google Scholar 

  37. Yaseen IF, Sahasrabuddhe HV (1999) A genetic algorithm for the cryptanalysis of Chor-Rivest knapsack public key cryptosystem (PKC). In: Proceedings third international conference on computational intelligence and multimedia applications. ICCIMA'99 (Cat. No. PR00300). IEEE, pp 81–85

    Google Scholar 

  38. Garg P, Shastri A, Agarwal DC (2007) An enhanced cryptanalytic attack on Knapsack Cipher using Genetic Algorithm. Int J Comput Inf Eng 1(12):4071–4074

    Google Scholar 

  39. Ramani G, Balasubramanian L (2011) Genetic algorithm solution for cryptanalysis of knapsack cipher with knapsack sequence of size 16. Int J Comput Appl 35(11):17–23

    Google Scholar 

  40. Song J, Zhang H, Meng Q, Wang Z (2007) Cryptanalysis of four-round DES based on genetic algorithm. In: 2007 International conference on wireless communications, networking and mobile computing. IEEE, pp 2326–2329

    Google Scholar 

  41. Vimalathithan R, Valarmathi ML (2009) Cryptanalysis of S-DES using genetic algorithm. Int J Recent Trends Eng 2(4):76

    Google Scholar 

  42. Sathya SS, Chithralekha T, Anandakumar P (2010) Nomadic genetic algorithm for cryptanalysis of DES 16. Int J Comput Theory Eng 2(3):1793–8201

    Google Scholar 

  43. Sharma L, Pathak BK, Sharma RG (2012) Breaking of simplified data encryption standard using genetic algorithm. Glob J Comput Sci Technol

    Google Scholar 

  44. Al Adwan F, Al Shraideh M, Al Saidat MS (2015) A genetic algorithm approach for breaking of simplified data encryption standard. Int J Secur Appl 9(9):295–304

    Google Scholar 

  45. Dworak K, Boryczka U (2017) Genetic algorithm as optimization tool for differential cryptanalysis of DES6. In: International conference on computational collective intelligence. Springer, Cham, pp 107–116

    Google Scholar 

  46. Nalini N, Rao GR (2005) Cryptanalysis of simplified data encryption standard via optimization heuristics. In: 2005 3rd International conference on intelligent sensing and information processing. IEEE, pp 74–79

    Google Scholar 

  47. Nalini N (2006) Cryptanalysis of block ciphers via improved simulated annealing technique. In: 9th International conference on information technology (ICIT'06). IEEE, pp 182–185

    Google Scholar 

  48. Soyjaudah KMS (2012) Cryptanalysis of simplified-data encryption standard using tabu search method. In: International conference on information processing. Springer, Berlin, Heidelberg, pp 561–568

    Google Scholar 

  49. Cowan MJ (2008) Breaking short playfair ciphers with the simulated annealing algorithm. Cryptologia 32(1):71–83

    Article  MathSciNet  Google Scholar 

  50. Clark JA, Jacob JL, Stepney S (2005) The design of S-boxes by simulated annealing. N Gener Comput 23(3):219–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash C. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, A., Sharma, P.C., Gupta, N.K., Vishwakarma, S.K. (2022). A Review on Metaheuristic Techniques in Automated Cryptanalysis of Classical Substitution Cipher. In: Nanda, P., Verma, V.K., Srivastava, S., Gupta, R.K., Mazumdar, A.P. (eds) Data Engineering for Smart Systems. Lecture Notes in Networks and Systems, vol 238. Springer, Singapore. https://doi.org/10.1007/978-981-16-2641-8_31

Download citation

Publish with us

Policies and ethics