Skip to main content

Modelling the Dilution and Amplification Effects on Sin Nombre Virus (SNV) in Deer Mouse in GAMA 1.8

  • Conference paper
  • First Online:
Modelling, Simulation and Applications of Complex Systems (CoSMoS 2019)

Abstract

Sin Nombre Virus (SNV) is a species of hantavirus that can cause hantavirus pulmonary syndrome in humans. To investigate the biodiversity effect on the SNV transmission in deer mouse, we formulated a stochastic agent-based model (ABM) to compare the impact between the presence of a dilution agent and an amplification agent in the deer mouse population. The ABM simulations were done in GAMA 1.8 and the results were then compared with the deterministic counterpart of the model. The deterministic results showed the dilution agent has better effectiveness in reducing the infected density compared to the amplification agent. However, this was not observed for the stochastic results with small populations. Instead, the infected densities were at a similar level for both dilution and amplification agent in the ABM results. This suggests that the investigation on the role of the community assemblage may not be relevant in reducing SNV transmission when the population density is small, and further research is needed to better understand the discrepancy between the stochastic and deterministic result and its implications. Our study highlights the importance of ABM in eco-epidemiological studies, and has established a methodological discussion regarding the usability of different simulation approaches e.g., deterministic and stochastic ABM in order to produce robust observations of eco-epidemiological phenomenon under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacNeil, A., Nichol, S.T., Spiropoulou, C.F.: Hantavirus pulmonary syndrome. Virus Res. 162, 138–147 (2011). https://doi.org/10.1016/j.virusres.2011.09.017

    Article  Google Scholar 

  2. Jiang, H., Zheng, X., Wang, L., Du, H., Wang, P., Bai, X.: Hantavirus infection: a global zoonotic challenge. Virol. Sin. 32, 32–43 (2017). https://doi.org/10.1007/s12250-016-3899-x

    Article  Google Scholar 

  3. Abramson, G., Kenkre, V.M.: Spatiotemporal patterns in the Hantavirus infection. Phys. Rev. E 66, 011912 (2002). https://doi.org/10.1103/PhysRevE.66.011912

    Article  Google Scholar 

  4. Peixoto, I.D., Abramson, G.: The effect of biodiversity on the hantavirus epizootic. Ecology 87(4), 873–879 (2006). https://doi.org/10.1890/0012-9658(2006)87[873:teobot]2.0.co;2

    Article  Google Scholar 

  5. Dizney, L.J., Ruedas, L.A.: Increased host species diversity and decreased prevalence of sin nombre virus. Emerg. Infect. Dis. 15(7), 1012–1018 (2009). https://doi.org/10.3201/eid1507.081083

    Article  Google Scholar 

  6. Suzán, G., Marcé, E., Giermakowski, J.T., Mills, J.N., Ceballos, G., Ostfeld, R.S., Armién, B., Pascale, J.M., Yates, T.L.: Experimental evidence for reduced rodent diversity causing increased hantavirus prevalence. PLoS ONE 4(5), e5461 (2009). https://doi.org/10.1371/journal.pone.0005461

    Article  Google Scholar 

  7. Randolph, S.E., Dobson, A.D.M.: Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139, 847–863 (2012). https://doi.org/10.1017/S0031182012000200

    Article  Google Scholar 

  8. Ogden, N.H., Tsao, J.I.: Biodiversity and Lyme disease: dilution or amplification? Epidemics 1(3), 196–206 (2009). https://doi.org/10.1016/j.epidem.2009.06.002

    Article  Google Scholar 

  9. Levi, T., Keesing, F., Holt, R.D., Barfield, M., Ostfeld, R.S.: Quantifying dilution and amplification in a community of hosts for tick-borne pathogens. Ecol. Appl. 26(2), 484–498 (2016). https://doi.org/10.1890/15-0122

    Article  Google Scholar 

  10. Faust, C.L., Dobson, A.P., Gottdenker, N., Bloomfield, L.S. P., McCallum, H.I., Gillespie, T.R., Diuk-Wasser, M., Plowright, R.K.: Null expectations for disease dynamics in shrinking habitat: dilution or amplification? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372(1722) (2017). https://doi.org/10.1098/rstb.2016.0173

  11. Luis, A.D., Kuenzi, A.J., Mills, J.N.: Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl. Acad. Sci. 115(31), 7979–7984 (2018). https://doi.org/10.1073/pnas.1807106115

    Article  Google Scholar 

  12. Allen, L.J.S.: A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect. Dis. Model. 2(2), 128–142 (2017). https://doi.org/10.1016/j.idm.2017.03.001

    Article  Google Scholar 

  13. McCormack, R.K., Allen, L.J.S.: Stochastic SIS and SIR multihost epidemic models. In: Proceedings of the Conference on Differential and Difference Equations and Applications, pp. 775–785 (2006)

    Google Scholar 

  14. Otero, M., Solari, H.G.: Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci. 223(1), 32–46 (2010). https://doi.org/10.1016/j.mbs.2009.10.005

    Article  MathSciNet  MATH  Google Scholar 

  15. Mandal, P.S., Banerjee, M.: Deterministic chaos vs. stochastic fluctuation in an eco-epidemic model. Epidemiology 7(3), 99–116 (2012). https://doi.org/10.1051/mmnp/20127308

  16. Guzzetta, G., Tagliapietra, V., Perkins, S.E., Hauffe, H.C., Poletti, P., Merler, S., Rizzoli, A.: Population dynamics of wild rodents induce stochastic fadeouts of a zoonotic pathogen. J. Anim. Ecol. 86, 451–459 (2017). https://doi.org/10.1111/1365-2656.12653

    Article  Google Scholar 

  17. Kaplan, M., Manore, C.A., Bagamian, K.H.: Agent-based hantavirus transmission model incorporating host behavior and viral shedding heterogeneities derived from field transmission experiments. Lett. Biomath. 3(1), 209–228 (2016). https://doi.org/10.1080/23737867.2016.1248507

    Article  Google Scholar 

  18. Wesley, C.L., Allen, L.J.S., Jonsson, C.B., Chu, Y., Owen, R.D.: A discrete-time rodent-hantavirus model structured by infection and developmental stages. In: Advances in Dicrete Dynamical Systems, 387–398, Mathematical Society of Japan, Tokyo, Japan (2009). https://doi.org/10.2969/aspm/05310387

  19. Escudero, C., Buceta, J., de la Rubia, F.J., Lindenberg, K.: Effects of internal fluctuations on the spreading of Hantavirus. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 70, 061907 (2004). https://doi.org/10.1103/PhysRevE.70.061907

  20. Mohd, M.H.B.: Modelling the presence-absence of multiple species. Ph.D. Thesis (2016)

    Google Scholar 

  21. Mohd, M.H.: How can modelling tools inform environmental and conservation policies? Int. J. Eng. Technol. 7(4.28), 333–337 (2018). https://doi.org/10.14419/ijet.v7i4.28.22610

  22. Lee, L.W.F., Mohd, H.M.: The effects of amplification and dilution agent in transmitting sin nombre virus (SNV) in deer mouse population. MATEMATIKA: MJIAM, 36(2), 85–98 (2020). https://doi.org/10.11113/matematika.v36.n2.1244

  23. Rubio, A.V., Castro-Arellano, I., Mills, J.N., List, R., Avila-Flores, R., Suzan, G.: Is species richness driving intra- and interspecific interactions and temporal activity overlap of a hantavirus host? An experimental test. PLoS ONE 12(11), e0188060 (2017). https://doi.org/10.1371/journal.pone.0188060

    Article  Google Scholar 

  24. Brenner, G.J., Moynihan, J.A.: Stressor-induced alterations in immune response and viral clearance following infection with Herpes Simplex Virus-Type 1 in BALB/c and C57BI/6 Mice. Brain Behav. Immun. 11, 9–23 (1997). https://doi.org/10.1006/brbi.1997.0480

    Article  Google Scholar 

  25. Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.-N., Marilleau, N., Caillou, P., Philippon, D., Drogoul, A.: Building, composing and experimenting complex spatial models with the GAMA platform. GeoInformatica 23(2), 299–322 (2019). https://doi.org/10.1007/s10707-018-00339-6

    Article  Google Scholar 

  26. Allen, L.J., McCormack, R.K., Jonsson, C.B.: Mathematical models for hantavirus infection in rodents. Bull. Math. Biol. 68(3), 511–524 (2006). https://doi.org/10.1007/s11538-005-9034-4

    Article  MathSciNet  MATH  Google Scholar 

  27. Milholland, M.T., Castro-Arellano, I., Arellano, E., Nava-Gracia, E., Rangel-Altamirano, G., Gonzalez-Cozatl, F.X., Suzan, G., Schountz, T., Gonzalez-Padron, S., Vigueras, A., Rubio, A.V., Maikis, T.J., Westrich, B.J., Martinez, III., J.A., Esteve-Gassent, M.D., Torres, M., Rodriguez-Ruiz, E.R., Hahn, D., Lacher, Jr., T.E.: Species identity supersedes the dilution effect concerning hantavirus prevalence at sites across Texas and Mexico. ILAR J. 58(3), 401–412 (2017). https://doi.org/10.1093/ilar/ily001

    Article  Google Scholar 

  28. Mohd, M.H., Murray, R., Plank, M.J., Godsoe, W.: Effects of dispersal and stochasticity on the presence-absence of multiple species. Ecol. Model. 342, 49–59 (2016). https://doi.org/10.1016/j.ecolmodel.2016.09.026

    Article  MATH  Google Scholar 

  29. Abbott, K.D., Ksiazek, T.G., Mills, J.N.: Long-term hantavirus persistence in rodent populations in central arizona. Emerg. Infect. Dis. 5(1), 102–112 (1999). https://doi.org/10.3201/eid0501.990112

    Article  Google Scholar 

  30. Dearing, M.D., Mangione, A.M., Karasov, W.H., Morzunov, S., Otteson, E., St. Jeor, S.: Prevalence of hantavirus in four species of neotoma from arizona and utah. J. Mammal. 79(4), 1254–1259 (1998). https://doi.org/10.2307/1383016

  31. Ostfeld, R.S., Keesing, F.: Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst. 43, 157–182 (2012). https://doi.org/10.1146/annurev-ecolsys-102710-145022

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the School of Mathematical Sciences and the Universiti Sains Malaysia (USM) for the support. Mohd Hafiz Mohd is supported by the USM Fundamental Research Grant Scheme (FRGS) No. 203/PMATHS/6711645.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, L.W.F., Mohd, M.H. (2021). Modelling the Dilution and Amplification Effects on Sin Nombre Virus (SNV) in Deer Mouse in GAMA 1.8. In: Mohd, M.H., Misro, M.Y., Ahmad, S., Nguyen Ngoc, D. (eds) Modelling, Simulation and Applications of Complex Systems. CoSMoS 2019. Springer Proceedings in Mathematics & Statistics, vol 359. Springer, Singapore. https://doi.org/10.1007/978-981-16-2629-6_3

Download citation

Publish with us

Policies and ethics