Skip to main content

Efficient Synthesis of Biologically Active Peptides Based on Micro-flow Amide Bond Formation

  • Chapter
  • First Online:
Middle Molecular Strategy
  • 380 Accesses

Abstract

Peptide drugs have garnered much attention in recent years because they possess the merits of both protein drugs and small-molecule-based drugs. In particular, specialty peptides such as N-methylated peptides and cyclic peptides have become increasingly important as drug candidates. Developing an inexpensive process for peptide chain elongation, that would also be high-yielding and scalable, however, is a highly challenging task even under the most promising reported conditions. We have performed amidations using highly active, high-atom economy, and inexpensive coupling agents. These highly active agents accelerated both the desired and the side reactions. The undesired reactions were suppressed, however, by taking advantage of micro-flow technology that allows precise control of both the reaction time and the temperature. Here we introduce our originally developed amidations for use with biologically active peptides including highly racemizable peptides, cyclic peptides, and bulky N-methylated peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henninot A, Collins JC, Nuss JM (2018) The current state of peptide drug discovery: back to the future? J Med Chem 61:1382–1414

    Article  CAS  PubMed  Google Scholar 

  2. Lau JL, Dunn MK (2018) Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    Article  CAS  PubMed  Google Scholar 

  3. Chatterjee J, Rechenmacher F, Kessler H (2013) N-Methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed 52:254–269

    Article  CAS  Google Scholar 

  4. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Design 81:136–147

    Article  CAS  Google Scholar 

  5. Zorzi A, Deyle K, Heinis C (2017) Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol 38:24–29

    Article  CAS  PubMed  Google Scholar 

  6. Vinogradov AA, Yin Y, Suga H (2019) Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc 141:4167–4181

    Article  CAS  PubMed  Google Scholar 

  7. Jing X, Jin K (2020) A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med Res Rev 40:753–810

    Article  CAS  PubMed  Google Scholar 

  8. Curtius T (1881) Ueber die Einwirkung von Chlorbenzoyl auf Glycocollsilber. J Prakt Chemie 24:239

    Article  Google Scholar 

  9. Han S-Y, Kim Y-A (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60:2447–2467

    Article  CAS  Google Scholar 

  10. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    Article  CAS  Google Scholar 

  11. Kimmerlin T, Seebach D (2005) ‘100 years of peptide synthesis’: ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J Pept Res 65:229–260

    Article  CAS  PubMed  Google Scholar 

  12. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631

    Article  CAS  PubMed  Google Scholar 

  13. Joullié MM, Lassen KM (2010) Evolution of amide bond formation. ARKIVOC 189–250

    Google Scholar 

  14. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111:6557–6602

    Article  CAS  PubMed  Google Scholar 

  15. Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480:471–479

    Article  CAS  PubMed  Google Scholar 

  16. Prabhu G, Basavaprabhu NN, Vishwanatha TM, Sureshbabu VV (2015) Amino acid chlorides: a journey from instability and racemization toward broader utility in organic synthesis including peptides and their mimetics. Tetrahedron 71:2785–2832

    Article  CAS  Google Scholar 

  17. Dunetz JR, Magano J, Weisenburger GA (2016) Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org Process Res Dev 20:140–177

    Article  CAS  Google Scholar 

  18. de Figueiredo RM, Suppo J-S, Campagne J-M (2016) Nonclassical routes for amide bond formation. Chem Rev 116:12029–12122

    Article  PubMed  CAS  Google Scholar 

  19. Constable DJC, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJL, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY (2007) Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem 9:411–420

    Article  CAS  Google Scholar 

  20. Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ (2018) Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem 20:5082–5103

    Article  CAS  Google Scholar 

  21. Wehrstedt KD, Wandrey PA, Heitkamp D (2005) Explosive properties of 1-hydroxybenzotriazoles. J Hazard Mater 126:1–7

    Article  CAS  PubMed  Google Scholar 

  22. Jad YE, Kumar A, El-Faham A, de la Torre BG, Albericio F (2019) Green transformation of solid-phase peptide synthesis. ACS Sustain Chem Eng 7:3671–3683

    Article  CAS  Google Scholar 

  23. McKnelly KJ, Sokol W, Nowick JS (2020) Anaphylaxis induced by peptide coupling agents: lessons learned from repeated exposure to HATU, HBTU, and HCTU. J Org Chem 85:1764–1768

    Article  CAS  PubMed  Google Scholar 

  24. Varnava KG, Sarojini V (2019) Making solid-phase peptide synthesis greener: a review of the literature. Chem Asian J 14:1088–1097

    Article  CAS  PubMed  Google Scholar 

  25. Porta R, Benaglia M, Puglisi A (2016) Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev 20:2–25

    Article  CAS  Google Scholar 

  26. Rossetti I, Compagnoni M (2016) Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: flow chemistry. Chem Eng J 296:56–70

    Article  CAS  Google Scholar 

  27. Shukla CA, Kulkarni AA (2017) Automating multistep flow synthesis: approach and challenges in integrating chemistry, machines and logic. Beilstein J Org Chem 13:960–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The Hitchhiker’s guide to flow chemistry. Chem Rev 117:11796–11893

    Article  CAS  PubMed  Google Scholar 

  29. Ramanjaneyulu BT, Vishwakarma NK, Vidyacharan S, Adiyala PR, Kim D-P (2018) Towards versatile continuous-flow chemistry and process technology via new conceptual microreactor systems. Bull Korean Chem Soc 39:757–772

    Article  CAS  Google Scholar 

  30. Fanelli F, Parisi G, Degennaro L, Luisi R (2017) Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J Org Chem 13:520–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Britton J, Raston CL (2017) Multi-step continuous-flow synthesis. Chem Soc Rev 46:1250–1271

    Article  CAS  PubMed  Google Scholar 

  32. Gérardy R, Emmanuel N, Toupy T, Kassin V-E, Tshibalonza NN, Schmitz M, Monbaliu J-CM (2018) Continuous flow organic chemistry: successes and pitfalls at the interface with current societal challenges. Eur J Org Chem 2018:2301–2351

    Article  CAS  Google Scholar 

  33. Colella M, Nagaki A, Luisi R (2020) Flow Technology for the genesis and use of (highly) reactive organometallic reagents. Chem Eur J 26:19–32

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida J-i, Nagaki A, Yamada T (2008) Flash chemistry: fast chemical synthesis by using microreactors. Chem Eur J 14:7450–7459

    Article  CAS  PubMed  Google Scholar 

  35. Yoshida J-i (2008) Flash chemistry—fast organic synthesis in micro systems. WILEY-VCH, Weinheim

    Google Scholar 

  36. Yoshida J-i (2010) Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control. Chem Rec 10:332–341

    Article  CAS  PubMed  Google Scholar 

  37. Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016) Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem Rev 116:10276–10341

    Article  PubMed  CAS  Google Scholar 

  38. Loubière K, Oelgemöller M, Aillet T, Dechy-Cabaret O, Prat L (2016) Continuous-flow photochemistry: a need for chemical engineering. Chem Eng Process 104:120–132

    Article  CAS  Google Scholar 

  39. Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K (2016) Utilization of microflow reactors to carry out synthetically useful organic photochemical reactions. J Photochem Photobiol C Photochem Rev 29:107–147

    Article  CAS  Google Scholar 

  40. Fuse S, Otake Y, Nakamura H (2017) Integrated micro-flow synthesis based on photochemical Wolff rearrangement. Eur J Org Chem 2017:6466–6473

    Article  CAS  Google Scholar 

  41. Politano F, Oksdath-Mansilla G (2018) Light on the horizon: current research and future perspectives in flow photochemistry. Org Process Res Dev 22:1045–1062

    Article  CAS  Google Scholar 

  42. Otake Y, Nakamura H, Fuse S (2018) Recent advances in the integrated micro-flow synthesis containing photochemical reactions. Tetrahedron Lett 59:1691–1697

    Article  CAS  Google Scholar 

  43. Sambiagio C, Noël T (2020) Flow photochemistry: shine some light on those tubes! Trends Chem 2:92–106

    Article  CAS  Google Scholar 

  44. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728

    Article  CAS  Google Scholar 

  45. Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T (2017) Safety assessment in development and operation of modular continuous-flow processes. React Chem Eng 2:258–280

    Article  CAS  Google Scholar 

  46. Anderson NG (2012) Using continuous processes to increase production. Org Process Res Dev 16:852–869

    Article  CAS  Google Scholar 

  47. Watts P, Wiles C, Haswell SJ, Pombo-Villar E, Styring P (2001) The synthesis of peptides using micro reactors. Chem Commun 990–991

    Google Scholar 

  48. Ramesh S, Cherkupally P, de la Torre BG, Govender T, Kruger HG, Albericio F (2014) Microreactors for peptide synthesis: looking through the eyes of twenty first century !!! Amino Acids 46:2091–2104

    Article  CAS  PubMed  Google Scholar 

  49. Fuse S, Otake Y, Nakamura H (2018) Peptide synthesis utilizing micro-flow technology. Chem Asian J 13:3818–3832

    Article  CAS  PubMed  Google Scholar 

  50. Gordon CP (2018) The renascence of continuous-flow peptide synthesis—an abridged account of solid and solution-based approaches. Org Biomol Chem 16:180–196

    Article  CAS  PubMed  Google Scholar 

  51. Ahmed N (2018) Peptide bond formations through flow chemistry. Chem Biol Drug Des 91:647–650

    Article  CAS  PubMed  Google Scholar 

  52. Fuse S, Tanabe N, Takahashi T (2011) Continuous in situ generation and reaction of phosgene in a microflow system. Chem Commun 47:12661–12663

    Article  CAS  Google Scholar 

  53. Fuse S, Mifune Y, Takahashi T (2014) Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor. Angew Chem Int Ed 53:851–855

    Article  CAS  Google Scholar 

  54. Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD (2015) Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep 32:1207–1235

    Article  CAS  PubMed  Google Scholar 

  55. Vértesy L, Aretz W, Knauf M, Markus A, Vogel M, Wink J (1999) Feglymycin, a novel inhibitor of the replication of the human immunodeficiency virus. J Antibiot 52:374–382

    Article  Google Scholar 

  56. Fuse S, Mifune Y, Nakamura H, Tanaka H (2016) Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation. Nat Commun 7:13491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dettner F, Hänchen A, Schols D, Toti L, Nußer A, Süssmuth RD (2009) Total synthesis of the antiviral peptide antibiotic feglymycin. Angew Chem Int Ed 48:1856–1861

    Article  CAS  Google Scholar 

  58. Mifune Y, Fuse S, Tanaka H (2014) Synthesis of N-allyloxycarbonyl 3,5-dihydroxyphenylglycine via photochemical Wolff rearrangement–nucleophilic addition sequence in a micro-flow reactor. J Flow Chem 4:172–178

    Article  Google Scholar 

  59. Fuse S, Otake Y, Mifue Y, Tanaka H (2015) A facile preparation of α-aryl carboxylic acid via one-flow Arndt-Eistert synthesis. Aust J Chem 68:1657–1661

    Article  CAS  Google Scholar 

  60. Aumailley M, Gurrath M, Muller G, Calvete J, Timpl R, Kessler H (1991) Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett 291:50–54

    Article  CAS  PubMed  Google Scholar 

  61. Mifune Y, Nakamura H, Fuse S (2016) A rapid and clean synthetic approach to cyclic peptides via micro-flow peptide chain elongation and photochemical cyclization: synthesis of a cyclic RGD peptide. Org Biomol Chem 14:11244–11249

    Article  CAS  PubMed  Google Scholar 

  62. Otake Y, Shibata Y, Hayashi Y, Kawauchi S, Nakamura H, Fuse S (2020) N-Methylated peptide synthesis via acyl N-Methylimidazolium cation generation accelerated by a brønsted acid. Angew Chem Int Ed 59:12925–12930

    Google Scholar 

  63. Lang G, Mitova MI, Cole ALJ, Din LB, Vikineswary S, Abdullah N, Blunt JW, Munro MHG (2006) Pterulamides I−VI, linear peptides from a Malaysian Pterula sp. J Nat Prod 69:1389–1393

    Article  CAS  PubMed  Google Scholar 

  64. Fuse S, Masuda K, Otake Y, Nakamura H (2019) Peptide-chain elongation using unprotected amino acids in a micro-flow reactor. Chem Eur J 25:15091–15097

    Article  CAS  PubMed  Google Scholar 

  65. Otake Y, Nakamura H, Fuse S (2018) Rapid and mild synthesis of amino acid N-Carboxy Anhydrides: basic-to-acidic flash switching in a microflow reactor. Angew Chem Int Ed 57:11389–11393

    Article  CAS  Google Scholar 

  66. Sugisawa N, Otake Y, Nakamura H, Fuse S (2020) Single-step, rapid, and mild synthesis of β-amino acid N-Carboxy anhydrides using micro-flow technology. Chem Asian J 15:79–84

    Article  CAS  PubMed  Google Scholar 

  67. Sugisawa N, Nakamura H, Fuse S (2020) Micro-flow synthesis of β-amino acid derivatives via a rapid dual activation approach. Chem Commun 56:4527–4530

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Fuse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuse, S. (2021). Efficient Synthesis of Biologically Active Peptides Based on Micro-flow Amide Bond Formation. In: Fukase, K., Doi, T. (eds) Middle Molecular Strategy. Springer, Singapore. https://doi.org/10.1007/978-981-16-2458-2_9

Download citation

Publish with us

Policies and ethics