Skip to main content

Mid-Sized Macrocyclic Peptides as a New Drug Modality

  • Chapter
  • First Online:
Middle Molecular Strategy

Abstract

Even though peptides are a major class of therapeutics since the early twentieth century, they had been rather considered as an elusive modality due to their low proteolytic stability and poor membrane permeability. Recently, it has become increasingly evident that mid-sized macrocyclic peptides containing exotic building blocks could exhibit specific/strong binding to various protein targets. Particularly, recent advance in ribosomal construction of random peptide libraries and their selection-based screening has revolutionized the discovery process of such molecules. In this chapter, we comprehensively summarize the background of currently available technologies developed by our laboratory and their recent outcomes, and also disclose new emerging technologies for synthesis and screening of artificial macrocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henninot A, Collins JC, Nuss JM (2018) The current state of peptide drug discovery: back to the future? J Med Chem 61:1382–1414. https://doi.org/10.1021/acs.jmedchem.7b00318

    Article  CAS  PubMed  Google Scholar 

  2. Santos GB, Ganesan A, Emery FS (2016) Oral administration of peptide-based drugs: beyond lipinski’s rule. ChemMedChem 11:2245–2251. https://doi.org/10.1002/cmdc.201600288

    Article  CAS  PubMed  Google Scholar 

  3. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  4. Vinogradov AA, Yin YZ, Suga H (2019) Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J Am Chem Soc 141:4167–4181. https://doi.org/10.1021/jacs.8b13178

    Article  CAS  PubMed  Google Scholar 

  5. Qian Z, Upadhyaya P, Pei D (2015) Synthesis and screening of one-bead-one-compound cyclic peptide libraries. Methods Mol Biol 1248:39–53. https://doi.org/10.1007/978-1-4939-2020-4_3

    Article  CAS  PubMed  Google Scholar 

  6. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410. https://doi.org/10.1021/cr960065d

    Article  CAS  PubMed  Google Scholar 

  7. Roberts RW, Szostak JW (1997) RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA 94:12297–12302. https://doi.org/10.1073/pnas.94.23.12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nemoto N, Miyamoto-Sato E, Husimi Y, Yanagawa H (1997) In vitro virus: bonding of mRNA bearing puromycin at the 3’-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett 414:405–408. https://doi.org/10.1016/s0014-5793(97)01026-0

    Article  CAS  PubMed  Google Scholar 

  9. Heinis C, Winter G (2015) Encoded libraries of chemically modified peptides. Curr Opin Chem Biol 26:89–98. https://doi.org/10.1016/j.cbpa.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  10. Derda R, Jafari MR (2018) Synthetic cross-linking of peptides: molecular linchpins for peptide cyclization. Protein Pept Lett 25:1051–1075. https://doi.org/10.2174/0929866525666181120090650

    Article  CAS  PubMed  Google Scholar 

  11. Yamagishi Y, Shoji I, Miyagawa S, Kawakami T, Katoh T, Goto Y, Suga H (2011) Natural product-like macrocyclic N-methyl-peptide inhibitors against a ubiquitin ligase uncovered from a ribosome-expressed de novo library. Chem Biol 18:1562–1570. https://doi.org/10.1016/j.chembiol.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  12. Passioura T, Katoh T, Goto Y, Suga H (2014) Selection-based discovery of drug like macrocyclic peptides. Annu Rev Biochem 83:727–752. https://doi.org/10.1146/annurev-biochem-060713-035456

    Article  CAS  PubMed  Google Scholar 

  13. Goto Y, Katoh T, Suga H (2011) Flexizymes for genetic code reprogramming. Nat Protoc 6:779–790. https://doi.org/10.1038/nprot.2011.331

    Article  CAS  PubMed  Google Scholar 

  14. Murakami H, Ohta A, Ashigai H, Suga H (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat Methods 3:357–359. https://doi.org/10.1038/nmeth877

    Article  CAS  PubMed  Google Scholar 

  15. Goto Y, Ohta A, Sako Y, Yamagishi Y, Murakami H, Suga H (2008) Reprogramming the translation initiation for the synthesis of physiologically stable cyclic peptides. ACS Chem Biol 3:120–129. https://doi.org/10.1021/cb700233t

    Article  CAS  PubMed  Google Scholar 

  16. Iwasaki K, Goto Y, Katoh T, Suga H (2012) Selective thioether macrocyclization of peptides having the N-terminal 2-chloroacetyl group and competing two or three cysteine residues in translation. Org Biomol Chem 10:5783–5786. https://doi.org/10.1039/c2ob25306b

    Article  CAS  PubMed  Google Scholar 

  17. Kawamura A, Munzel M, Kojima T, Yapp C, Bhushan B, Goto Y, Tumber A, Katoh T, King ON, Passioura T, Walport LJ, Hatch SB, Madden S, Muller S, Brennan PE, Chowdhury R, Hopkinson RJ, Suga H, Schofield CJ (2017) Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Nat Commun 8:14773. https://doi.org/10.1038/ncomms14773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Passioura T, Liu W, Dunkelmann D, Higuchi T, Suga H (2018) Display selection of exotic macrocyclic peptides expressed under a radically reprogrammed 23 amino acid genetic code. J Am Chem Soc 140:11551–11555. https://doi.org/10.1021/jacs.8b03367

    Article  CAS  PubMed  Google Scholar 

  19. Ahlbach CL, Lexa KW, Bockus AT, Chen V, Crews P, Jacobson MP, Lokey RS (2015) Beyond cyclosporine A: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Med Chem 7:2121–2130. https://doi.org/10.4155/fmc.15.78

    Article  CAS  PubMed  Google Scholar 

  20. Bockus AT, Schwochert JA, Pye CR, Townsend CE, Sok V, Bednarek MA, Lokey RS (2015) Going out on a limb: delineating the effects of beta-branching, N-methylation, and side chain size on the passive permeability, solubility, and flexibility of sanguinamide A analogues. J Med Chem 58:7409–7418. https://doi.org/10.1021/acs.jmedchem.5b00919

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP (2017) Orally absorbed cyclic peptides. Chem Rev 117:8094–8128. https://doi.org/10.1021/acs.chemrev.6b00838

    Article  CAS  PubMed  Google Scholar 

  22. Goto Y, Murakami H, Suga H (2008) Initiating translation with D-amino acids. RNA 14:1390–1398. https://doi.org/10.1261/rna.1020708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujino T, Goto Y, Suga H, Murakami H (2013) Reevaluation of the D-amino acid compatibility with the elongation event in translation. J Am Chem Soc 135:1830–1837. https://doi.org/10.1021/ja309570x

    Article  CAS  PubMed  Google Scholar 

  24. Katoh T, Tajima K, Suga H (2017) Consecutive elongation of D-amino acids in translation. Cell Chem Biol 24:46–54. https://doi.org/10.1016/j.chembiol.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  25. Fujino T, Goto Y, Suga H, Murakami H (2016) Ribosomal synthesis of peptides with multiple beta-amino acids. J Am Chem Soc 138:1962–1969. https://doi.org/10.1021/jacs.5b12482

    Article  CAS  PubMed  Google Scholar 

  26. Katoh T, Suga H (2018) Ribosomal incorporation of consecutive beta-amino acids. J Am Chem Soc 140:12159–12167. https://doi.org/10.1021/jacs.8b07247

    Article  CAS  PubMed  Google Scholar 

  27. Katoh T, Sengoku T, Hirata K, Ogata K, Suga H (2020) Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic beta-amino acids. Nat Chem. https://doi.org/10.1038/s41557-020-0525-1

    Article  PubMed  Google Scholar 

  28. Ohshiro Y, Nakajima E, Goto Y, Fuse S, Takahashi T, Doi T, Suga H (2011) Ribosomal synthesis of backbone-macrocyclic peptides containing gamma-amino acids. ChemBioChem 12:1183–1187. https://doi.org/10.1002/cbic.201100104

  29. Katoh T, Suga H (2020) Ribosomal elongation of cyclic gamma-amino acids using a reprogrammed genetic code. J Am Chem Soc 142:4965–4969. https://doi.org/10.1021/jacs.9b12280

    Article  CAS  PubMed  Google Scholar 

  30. Maini R, Kimura H, Takatsuji R, Katoh T, Goto Y, Suga H (2019) Ribosomal formation of thioamide bonds in polypeptide synthesis. J Am Chem Soc 141:20004–20008. https://doi.org/10.1021/jacs.9b11097

    Article  CAS  PubMed  Google Scholar 

  31. Ohta A, Murakami H, Higashimura E, Suga H (2007) Synthesis of polyester by means of genetic code reprogramming. Chem Biol 14:1315–1322. https://doi.org/10.1016/j.chembiol.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  32. Goto Y, Suga H (2009) Translation initiation with initiator tRNA charged with exotic peptides. J Am Chem Soc 131:5040–5041. https://doi.org/10.1021/ja900597d

    Article  CAS  PubMed  Google Scholar 

  33. Katoh T, Wohlgemuth I, Nagano M, Rodnina MV, Suga H (2016) Essential structural elements in tRNA(Pro) for EF-P-mediated alleviation of translation stalling. Nat Commun 7:11657. https://doi.org/10.1038/ncomms11657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katoh T, Iwane Y, Suga H (2017) Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res 45:12601–12610. https://doi.org/10.1093/nar/gkx1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okuma R, Kuwahara T, Yoshikane T, Watanabe M, Dranchak P, Inglese J, Shuto S, Goto Y, Suga H (2020) A macrocyclic peptide library with a structurally constrained cyclopropane-containing building block leads to thiol-independent inhibitors of phosphoglycerate mutase. Chem Asian J. https://doi.org/10.1002/asia.202000700

    Article  PubMed  Google Scholar 

  36. Yu H, Dranchak P, Li Z, MacArthur R, Munson MS, Mehzabeen N, Baird NJ, Battalie KP, Ross D, Lovell S, Carlow CK, Suga H, Inglese J (2017) Macrocycle peptides delineate locked-open inhibition mechanism for microorganism phosphoglycerate mutases. Nat Commun 8:14932. https://doi.org/10.1038/ncomms14932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Desai BJ, Goto Y, Cembran A, Fedorov AA, Almo SC, Gao J, Suga H, Gerlt JA (2014) Investigating the role of a backbone to substrate hydrogen bond in OMP decarboxylase using a site-specific amide to ester substitution. Proc Natl Acad Sci USA 111:15066–15071. https://doi.org/10.1073/pnas.1411772111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goto Y, Ito Y, Kato Y, Tsunoda S, Suga H (2014) One-pot synthesis of azoline-containing peptides in a cell-free translation system integrated with a posttranslational cyclodehydratase. Chem Biol 21:766–774. https://doi.org/10.1016/j.chembiol.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  39. Goto Y, Suga H (2016) A posttranslational cyclodehydratase, PatD, tolerates sequence variation in the C-terminal region of the substrate peptides. Chem Lett 45:1247–1249. https://doi.org/10.1246/cl.160562

    Article  CAS  Google Scholar 

  40. Goto Y, Suga H (2020) In vitro biosynthesis of peptides containing exotic azoline analogues. ChemBioChem 21:84–87. https://doi.org/10.1002/cbic.201900521

    Article  CAS  PubMed  Google Scholar 

  41. Kato Y, Kuroda T, Huang Y, Ohta R, Goto Y, Suga H (2020) Chemoenzymatic posttranslational modification reactions for the synthesis of Psi[CH2 NH]-containing peptides. Angew Chem Int Ed Engl 59:684–688. https://doi.org/10.1002/anie.201910894

    Article  CAS  PubMed  Google Scholar 

  42. Ozaki T, Yamashita K, Goto Y, Shimomura M, Hayashi S, Asamizu S, Sugai Y, Ikeda H, Suga H, Onaka H (2017) Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun 8:14207. https://doi.org/10.1038/ncomms14207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vinogradov AA, Shimomura M, Goto Y, Ozaki T, Asamizu S, Sugai Y, Suga H, Onaka H (2020) Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat Commun 11:2272. https://doi.org/10.1038/s41467-020-16145-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vinogradov AA, Shimomura M, Kano N, Goto Y, Onaka H, Suga H (2020) Promiscuous enzymes cooperate at the substrate level en route to lactazole A. J Am Chem Soc 142:13886–13897. https://doi.org/10.1021/jacs.0c05541

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuki Goto or Hiroaki Suga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goto, Y., Nagano, M., Suga, H. (2021). Mid-Sized Macrocyclic Peptides as a New Drug Modality. In: Fukase, K., Doi, T. (eds) Middle Molecular Strategy. Springer, Singapore. https://doi.org/10.1007/978-981-16-2458-2_6

Download citation

Publish with us

Policies and ethics