Skip to main content

Design of Wearable Goniometer

  • Conference paper
  • First Online:
Intelligent Sustainable Systems

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 213))

  • 721 Accesses

Abstract

Arthritis is one of the common rheumatoid or musculoskeletal disorders, and it is a significant contributor to the world’s disability burden. It mainly affects knee joints, and the prevalence of disease increases with age. In several cases, people with arthritis suffer from the loss of mobility and hardening of joints. Common factors that result in decreased mobility include aging, obesity, poor physical activity, and an improper diet. To improve limited motion, a smart wearable monitoring device can be used to assist a person to maintain regular physical activity and to boost their mobility status. Our proposed idea is to develop a wearable goniometer with a mobile application to determine the active and passive range of motion, such as flexion and extension in the knee for senior citizens. This device can help the physiotherapists to virtually guide and supervise the patients in their rehabilitation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verhoeven, F., Tordi, N., Prati, C., Demougeot, C., Mougin, F., Wendling, D.: Physical activity in patients with rheumatoid arthritis. Joint Bone Spine 83(3) [Pubmed] (2016)

    Google Scholar 

  2. Heidari, B.: Rheumatoid Arthritis: Early diagnosis and treatment outcomes. Caspian J. Intern. Med. 2(1), 161–70 [Pubmed] (2011)

    Google Scholar 

  3. AI- Rubaye, A.F., Kadhim, M.J., Hameed, I.H.: Rheumatoid arthritis: history, stages, epidemiology, pathogenesis, diagnosis and treatment. Int. J. Toxicol. Pharmacol. Res. 9(2) [ncbi] [Google Scholar] (2017)

    Google Scholar 

  4. Yoshimoto, H., Date, N., Yonemoto, S.: Vision-based real-time motion capture systems using multiple cameras. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 247–251 [Google Scholar] (2003)

    Google Scholar 

  5. Donno, M., Palange, E., Di Nicola, F., Bucci, G., Ciancetta, F.: A new flexible optical fiber goniometer for dynamic angular measurements: application to human joint movement monitoring. IEEE Trans. Instrum. Meas. 57(8) (2008)

    Google Scholar 

  6. Ruiz Olaya, A.F., Callejas Cuervo, M., Lara Herrera, C.N.: Wearable low-cost inertial sensor based electrogoniometer for measuring joint range of motion. Dyna 84(201), 180–185 [Google Scholar] (2017)

    Google Scholar 

  7. Nwaizu, H., Saatchi, R., Burke, D.: Accelerometer based human joints range of movement measurement. In: 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE (2016)

    Google Scholar 

  8. Djuric Jovicic, M.D., Jovicic, N.S., Popovic, D.B.: Kinematics of gait: new method for angle estimation based on accelerometers. Sensors 11(11), 10571–10585 [ncbi] (2011)

    Google Scholar 

  9. Ilius Faisal, A., Majumder, S., Mondal, T., Cowan, D., Naseh, S., Jamel Deen, M.: Monitoring methods of human body joints: state-of-the-art and research challenges. Sensors 2019 [Pubmed] (2019)

    Google Scholar 

  10. A. Device: Small, low power, 3- axis ± 3 g accelerometer. ADXL335 Datasheet (2009)

    Google Scholar 

  11. Bonato, P.: Advances in wearable technology and applications in physical medicine and rehabilitation. J. NeuroEng. Rehab. [Google Scholar] (2005)

    Google Scholar 

  12. Zhou, H., Hu, H.: Human motion tracking for rehabilitation—A survey. Biomed. Signal Process. Control. 3, 1–8 [Google Scholar] (2008)

    Google Scholar 

  13. Dong, W., Ming Chen, I., Lim, K.Y., Goh, Y.K.: Measuring uniaxial joint angles with a minimal accelerometer configuration. In: Proceedings in 1st International Convention on Rehabilitation Engineering & Assistive Technology: In Conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation Meeting, pp. 88–91 (2007)

    Google Scholar 

  14. Atallah, L., Lo, B., King, R., Yang, G.Z.: Sensor placement for activity detection using wearable accelerometers. In: 2010 International Conference on Body Sensor Networks. Ä°EEE (2010)

    Google Scholar 

  15. Liu, K., Liu, T., Shibata, K., Inoue, Y., Zheng, R.: Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system. J. Biomech. 42, 2747–2752 [Pubmed] (2009)

    Google Scholar 

  16. Tognetti, A., Lorussi, F., Carbonaro, N., Danilo de Rossi, D.: Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors, 28435–28455 [Pubmed] (2015)

    Google Scholar 

Download references

Acknowledgements

This work was performed in the Department of Biomedical Engineering at Sri Ramakrishna Engineering College, Coimbatore, India. The authors would like to express unfathomable thanks to the principal, Dr. N. R. Alamelu for the encouragement throughout the completion of the project. We would also like to express our deepest gratitude to the project coordinator Ms. V. Sri Vidhya Sakthi and project guide Ms. A. Siva Sakthi for their inspiring guidance. In addition, we would like to thank and acknowledge the contributions rendered by Dr. Seetharam and Dr. B. Bala Subramanian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Siva Sakthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siva Sakthi, A., Mithra, B., Rakshana, M., Niveda, S., Gayathri, K. (2022). Design of Wearable Goniometer. In: Raj, J.S., Palanisamy, R., Perikos, I., Shi, Y. (eds) Intelligent Sustainable Systems. Lecture Notes in Networks and Systems, vol 213. Springer, Singapore. https://doi.org/10.1007/978-981-16-2422-3_46

Download citation

Publish with us

Policies and ethics