Skip to main content

Comprehensive Study on Heterojunction Solar Cell

  • Conference paper
  • First Online:
Machine Learning, Advances in Computing, Renewable Energy and Communication

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 768))

Abstract

Renewable energy is gaining momentum worldwide due to the increasing concern over traditional fuels’ sustainability and environmental impact. Solar photovoltaics is a serious contender, owing to its many advantages: no harmful greenhouse gas emissions; free and abundant; minimal maintenance costs. PV panels can provide an effective solution for peak demand needs. They are also easy to install and can be easily integrated with the existing systems. This paper focuses on the Heterojunction Intrinsic Thin Film (HIT) technology. This technology combines both crystalline and amorphous solar cells’ best qualities, thus maximizing its overall efficiency. This paper analyses the HIT cells with advantages, disadvantages, and comparisons. A case study also verifies the performance. In this case study, the effect of crystalline Si and amorphous Si-based heterojunction photovoltaic cell with ZnS nanoparticle layer has been studied. ZnS nanoparticle layer was deposited on crystalline Si and amorphous Si-based HJ photovoltaic cell via the spin coating process. This study described the effect of zinc sulfide nanoparticles (ZnS NP) embedded in polymethyl methacrylate (PMMA) as a top layer of a crystalline Si and amorphous Si-based HJ photovoltaic cell. The cell characterizations have been carried out by quantum efficiency (QE). ZnS NP/PMMA film acts as an antireflective layer to utilize high-energy photons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeman M, Zhang D (2012) Heterojunction silicon based solar cells. In: van Sark WGJHM, Korte L, Roca F (eds) Physics and technology of amorphous-crystalline heterostructure silicon solar cells. Engineering materials. Springer, Berlin. https://doi.org/10.1007/978-3-642-22275-7_2

  2. Swanson RM et al (1984) Point-contact silicon solar cells. IEEE Trans Electron Devices 31:661–664. https://doi.org/10.1109/T-ED.1984.21586

    Article  Google Scholar 

  3. Smith DD, Reich G, Baldrias M, Reich M, Boitnott N, Bunea G (2016) Silicon solar cells with total area efficiency above 25%. In: Proceedings of the IEEE 43rd photovoltaic specialists conference (PVSC), pp 3351–3355. https://doi.org/10.1109/PVSC.2016.7750287

  4. Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O (2000) HITTM cells—high-efficiency crystalline Si cells with novel structure. Prog Photovolt Res Appl 8:503–513. https://doi.org/10.1002/1099-159X(200009/10)8:5%3c503::AID-PIP347%3e3.0.CO;2-G

    Article  Google Scholar 

  5. Panasonic (2019) Photovoltaic module HIT, VBHN330SJ47/VBHN325SJ47 datasheet

    Google Scholar 

  6. Kim N, Um HD, Choi I, Kim KH, Seo K (2016) 18.4%-efficient heterojunction Si solar cells using optimized ITO/Top electrode. ACS Appl Mater Interfaces 8:11412–11417. https://doi.org/10.1021/acsami.6b00981

    Article  Google Scholar 

  7. Olson JM (1994) Heterojunction solar cell. US Patent 5,342,453

    Google Scholar 

  8. Yoshikawa K et al (2017) Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energy Mater Sol Cells 173:37–42. https://doi.org/10.1016/j.solmat.2017.06.024

    Article  Google Scholar 

  9. Masuko K et al (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovolt 4(6):1433–1435. https://doi.org/10.1109/JPHOTOV.2014.2352151

    Article  Google Scholar 

  10. Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, Long W, Zheng K, Yan H, Xu X (2020) 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers. Sol Energy Mater Sol Cells 215:110643. https://doi.org/10.1016/j.solmat.2020.110643

  11. Haque MM, Dickens Tusha Falia C, Hasan M (2019) Investigating the performance of nanocrystalline silicon HIT solar cell by Silvaco ATLAS. In: Proceedings of the 22nd international conference on computer and information technology (ICCIT). Dhaka, Bangladesh, pp 1–6. https://doi.org/10.1109/ICCIT48885.2019.9038595

  12. Delavaran H, Shahhoseini A (2019) Hydrogenated fluorinated microcrystalline silicon oxide (μc-SiO:F:H): a new material for the emitter layer of HIT solar cells. In: Proceedings of the 27th Iranian conference on electrical engineering (ICEE), Yazd, pp 36–40. https://doi.org/10.1109/IranianCEE.2019.8786742

  13. Huang H, Zhou L, Yuan J, Quan Z (2019) Simulation of a-Si:H/c-Si heterojunction solar cells: from planar junction to local junction. Chin Phys B 28:128503. https://doi.org/10.1088/1674-1056/ab5212

    Article  Google Scholar 

  14. Kato S, Kurokawa Y, Gotoh K et al (2019) Silicon nanowire heterojunction solar cells with an Al2O3 passivation film fabricated by atomic layer deposition. Nanoscale Res Lett 14:99. https://doi.org/10.1186/s11671-019-2930-1

    Article  Google Scholar 

  15. Khokhar MQ, Hussain SQ, Kim S et al (2020) Review of rear emitter silicon heterojunction solar cells. Trans Electr Electron Mater 21:138–143. https://doi.org/10.1007/s42341-020-00172-5

    Article  Google Scholar 

  16. Srisantirut T, Pengchan W, Phetchakul T (2020) Diamond-like carbon thin-film coating for application on heterojunction solar cells by ECR-CVD system. IOP Conf Ser Mater Sci Eng 855:012009. https://doi.org/10.1088/1757-899X/855/1/012009

    Article  Google Scholar 

  17. Li S, Tang Z, Xue J, Jian-jun G, Shi Z, Li X (2018) Comparative study on front emitter and rear emitter n-type silicon heterojunction solar cells: the role of folded electrical fields. Vacuum 149:313–318. https://doi.org/10.1016/J.VACUUM.2017.12.041

    Article  Google Scholar 

  18. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 26:3–12. https://doi.org/10.1002/pip.2978

    Article  Google Scholar 

  19. Meza D, Cruz A, Morales-Vilches AB, Korte L, Stannowski B (2019) Aluminum-doped zinc oxide as front electrode for rear emitter silicon heterojunction solar cells with high efficiency. Appl Sci 9(862). https://doi.org/10.3390/app9050862

  20. Pankove JI, Tarng ML (1979) Amorphous silicon as a passivant for crystalline silicon. Appl Phys Lett 34:156–157. https://doi.org/10.1063/1.90711

    Article  Google Scholar 

  21. Wang J, Meng C, Zhao L, Wang W, Xu X, Zhang Y, Yan H (2020) Effect of residual water vapor on the performance of indium tin oxide film and silicon heterojunction solar cell. Sol Energy 204:720–725. https://doi.org/10.1016/j.solener.2020.04.086

    Article  Google Scholar 

  22. Kobayashi E, Watabe Y, Hao R, Ravi TS (2016) Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers. Prog Photovolt Res Appl 24:1295–1303. https://doi.org/10.1002/pip.2813

    Article  Google Scholar 

  23. Taira S, Yoshimine Y, Terakawa A, Maruyama E, Tanaka M (2006) Temperature properties of high-Voc HIT solar cells. Renew Energy 115–118

    Google Scholar 

  24. Mulligan WP, Rose DH, Cudzinovic MJ et al (2004) Manufacture of solar cells with 21% efficiency. In: Proceedings of the 19th EPVSEC, p 387

    Google Scholar 

  25. Green MA (1987) High efficiency silicon solar cells. In: Proceedings of the seventh EC photovoltaic solar energy conference, pp 681–687. https://doi.org/10.1007/978-94-009-3817-5

  26. Navaneethan M, Archana J, Nisha KD, Ponnusamy S, Arivanandhan M, Hayakawa Y, Muthamizhchelvan C (2012) Synthesis of Wurtzite ZnS nanorods by microwave assisted chemical route. Mater Lett 66:276–279. https://doi.org/10.1016/j.matlet.2011.08.082

    Article  Google Scholar 

  27. Omurzak E, Mashimo T, Sulaimankulova S, Takebe S, Chen L, Abdullaeva Z, Iwamoto C, Oishi Y, Ihara H, Okudera H, Yoshiasa A (2011) Wurtzite-type ZnS nanoparticles by pulsed electric discharge. Nanotechnology 22:365602. https://doi.org/10.1088/0957-4484/22/36/365602

  28. She Y, Yang J, Qiu K (2010) Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and Na2S under ultrasonic. Trans Nonferrous Metals Soc China 20:211–215. https://doi.org/10.1016/S1003-6326(10)60041-6

    Article  Google Scholar 

  29. Onwudiwe DC, Ajibade PA (2011) ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int J Mol Sci 12:5538–5551. https://doi.org/10.3390/ijms12095538

    Article  Google Scholar 

  30. Farfan W, Mosquera Vargas E, Marin C (2011) Synthesis and blue photoluminescence from naturally dispersed antimony selenide (Sb2Se3) 0-D nanoparticles. Adv Sci Lett 4:85–88. https://doi.org/10.1166/asl.2011.1185

  31. Pattnaik A, Jha S, Tomar M, Gupta V, Prasad B, Mondal S (2018) Improving the quantum efficiency of the monocrystalline silicon solar cell using erbium-doped zinc sulphide nanophosphor in downshift layer. Mater Res Express 5:095014. https://doi.org/10.1088/2053-1591/aad602

    Article  Google Scholar 

  32. Dai X, Chen T, Cai H, Wen H, Sun Y (2016) Improving performance of organic-silicon heterojunction solar cells based on textured surface via acid processing. ACS Appl Mater Interfaces 8:14572–14577. https://doi.org/10.1021/acsami.6b03164

    Article  Google Scholar 

  33. Lei C, Peng C, Zhong J, Li H, Yang M, Zheng K, Qu X, Wu L, Yu C, Li Y, Xu X (2020) Phosphorus treatment to promote crystallinity of the microcrystalline silicon front contact layers for highly efficient heterojunction solar cells. Sol Energy Mater Sol Cells 209:110439. https://doi.org/10.1016/j.solmat.2020.110439

  34. Zeman M, Schropp REI (2012) Thin-film silicon PV technology. In: Sayigh A (ed) Comprehensive renewable energy, vol 1. Elsevier BV, pp 389–398. https://doi.org/10.1016/B978-0-08-087872-0.00119-0

Download references

Acknowledgements

The authors would like to recognize Dr. Anil Kumar Saxena, Dr. B. Pant, and Mr. Vinayan Bhardwaj [BHEL-ASSCP] for immense technical insights.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pakala, P.S.A., Pattnaik, A., Shivangi, Tomar, A. (2022). Comprehensive Study on Heterojunction Solar Cell. In: Tomar, A., Malik, H., Kumar, P., Iqbal, A. (eds) Machine Learning, Advances in Computing, Renewable Energy and Communication. Lecture Notes in Electrical Engineering, vol 768. Springer, Singapore. https://doi.org/10.1007/978-981-16-2354-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2354-7_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2353-0

  • Online ISBN: 978-981-16-2354-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics