Skip to main content

Multi-objective Optimization of CNC Drilling Parameters on Machining of HcHcr Steel Using Taguchi’s Technique and Grey Relational Analysis

  • Conference paper
  • First Online:
Advances in Thermal Engineering, Manufacturing, and Production Management (ICTEMA 2020)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In this present research paper, multi-objective optimization of CNC Drilling parameters on machining of HcHcr steel using Taguchi’s and GRA and work considered four input parameters (point angles, spindle speeds, feed rates, drills diameter) and two output parameters (surface roughness, delamination). Initially, experimentation is carried out using Taguchi’s (L27) orthogonal array, and multi-objective optimization is done with Taguchi’s based grey relational analysis. HSS twist drills are used for machining. Additionally, comparative analysis is carried out between single objective and multi-objective optimization technique and the result shows optimum combinations of drilling parameters using Taguchi’s method are 136° point angle (A3); 2700 RPM spindle speed (B3); 80 mm/min feed rate (C1) and 10 mm drill diameter (D2), i.e., A3B3C1D2 for surface roughness and 136° point angle (A3); 2700 RPM spindle speed (B3);80 mm/min feed rate (C1) and 10 mm drill diameter (D3), i.e., A3B3C1D3 for delamination. Furthermore, ANOVA analysis carried out to determine significant CNC drilling parameters and results shows spindle speeds (42.296%) is most significant process parameter used for surface roughness (SR) followed by feed rates (28.930%), drill diameters and point angles; spindle speed (64.4247%) is most significant parameter for delamination subsequently feed rates (19.832%) drill diameters and point angles and spindle speed (60.095%) is most significant for multi-objective optimization subsequently feed rates (26.94%) drills diameter and point angles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsecularatne JA, Zhang LC, Montross C, Mathew P (2005) On machining of hardened AISI D2 Steel with PCBN tools. J Mater Process Technol 171:244–252

    Google Scholar 

  2. Ravishankar SR, Murthy CRL (1996) Ultrasonic imaging for evaluation of drill induced delaminations in composite laminates. In: Proceedings of 14th conference on non-destructive testing. Oxford and IBH Publishing, pp 8–13

    Google Scholar 

  3. Benes J (2000) Hole making trends run deep, fast and dry. Am Mach 144(5):10–97

    Google Scholar 

  4. Kumar D, Singh LP, Singh G (2012) Operational modeling for optimizing surface roughness in mild steel drilling using Taguchi technique. Int J Res Manage 2(3):66–67

    Google Scholar 

  5. Tyagi Y, Chaturvedi V, Vimal J (2012) Parametric optimization of drilling machining process using Taguchi design and ANOVA approach. J Emerg Technol Adv Eng 2(7):339–347

    Google Scholar 

  6. Jindal A, Singla VK (2011) Experimental investigation of process parameters in drilling operation using different software technique. Int J Eng Sci 1(1):135–154

    Google Scholar 

  7. Koenig W, Wulf C, Grass P, Willerscheid H (1985) Machining of fiber reinforced plastics. Ann CIRP 34:537–548

    Article  Google Scholar 

  8. Davim JP, Reis P (2003) Drilling carbon fiber reinforced plastic manufactured by auto clave experimental and statistical study. Mater Design 24(5):315–324

    Google Scholar 

  9. Riza Motorcu R (2010) The optimization of machining parameters using the taguchi method for surface roughness of AISI 8660 hardened alloy steel. J Mech Eng 56(6):391–401

    Google Scholar 

  10. Cicek A, Kivak T, Samtas G (2012) Application of Taguchi’s method for surface roughness and roundness error in drillingof AISI 316 stainless steel. J Mech Eng 58(3):122–129

    Google Scholar 

  11. Galloway DF (1957) Some experiments on the influence of various factors on drill performance. Trans ASME 79:191–223

    Google Scholar 

  12. Caprino G, Tagliaferri V (1985) Development in drilling glass fiber reinforced plastics. Int J Mach Tools Manuf 35(6):817–829

    Article  Google Scholar 

  13. Haggerty WA, Ernst H (1958) The spiral point drills—self-centering drill point geometry. ASTE 101:58

    Google Scholar 

  14. Tsao CC, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Technol (2031–3):342–348

    Google Scholar 

  15. Lin SC, Chen IK (1996) Drilling carbon fiber-reinforced composite material at high speed Wear. J Compos Mater 194:156–162

    Google Scholar 

  16. Koenig W, Wulf C, Grass P, Willerscheid H (1985) Machining of fiber reinforced plastics. Ann CIRP 34(2):538–548

    Google Scholar 

  17. Hocheng H, Puw HY (1992) On drilling characteristics of fiber-reinforced thermoset and thermoplastics. Int J Mach Tool Manuf 32(4):583–592

    Article  Google Scholar 

  18. Chen WC (1997) Some experimental investigations in the drilling of carbon fiber-reinforced plastic (CFRP) composite laminates. Int J Mach Tool Manuf 37(8):1097–1108

    Article  Google Scholar 

  19. Doran JH, Maikish (1937) Machining boron composite. In: Noton BR (ed) Composite materials in engineering design. ASM Press, pp 242–250

    Google Scholar 

  20. Veniali F, Di Ilio A, Tagliaferri V (1995) An experimental study of the drilling of aramid composites. Trans ASME J Energy Resour Technol 117:271–278

    Google Scholar 

  21. Koplev A, Lystrup A, Vorm P (1983) The cutting process, chips and cutting forces in machining CFRP. Composites 14(4):371–376

    Article  Google Scholar 

  22. Singh I, Bhatnagar N (2006) Drilling of uni-directional glass fiber reinforced plastics composites laminates. Int J Adv Manuf Technol 27:870–76

    Google Scholar 

  23. Azmir MA, Nair Sivasankaran P, Hamedon Z (2013) Experimental study on drilling process of CFRP composite laminate. Mater Sci Forum 638–42:927–932

    Google Scholar 

  24. Krishnamoorthy A, Rajendra Boopathy S, Palanikumar K (2009) Delamination analysis in drilling of CFRP composites using response surface methodology. J Compos Mater 43(24):2885–2902

    Article  Google Scholar 

  25. Rawata S, Attia H (2009) Characterization of the dry high speed drilling process of woven composites using machinability maps approach. CIRP Ann Manuf Technol 58:105–108

    Google Scholar 

  26. Khashaba UA, Seif MA, Elhamid MA (2007) Drilling analysis of chopped composites. Compos Appl Sci Manuf 38(1):61–70

    Google Scholar 

  27. Singh P, Bhambri K (2016) Optimization of Process Parameters of AISI D3 steel with abrasive assisted drilling. Int Res J Eng Technol 31446–31452

    Google Scholar 

  28. Chouhan YS, SalodaMA JS, Agarwal C (2016) Optimization of drilling process parameters for thrust force: a review. Int J Fract Damage Mech 1:1–7

    Google Scholar 

  29. Kalita B, Nath T (2016) An experimental investigation and optimization of cutting parameter in drilling AISI B1113 usingM2HSS drill bit. Int Conf Explor Innov Eng Tech (ICEIET)

    Google Scholar 

  30. Kurt M, Bagei E, Kaynak Y (2009) Application of taguchi method in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling process. Int J Adv Manuf Technol 40:458–469

    Article  Google Scholar 

  31. Tsao CC, Hocheng H (2004) Taguchi analysis of delamination associated with various drill bits in drilling of composite material. Int J Mach Tools Manuf 44:1403–1416

    Google Scholar 

  32. Krishnaraj V, Prabukarthi A, Ramanathan A, Davim JP (2012) Optimization of machining parameters at high speed drilling of carbon fiber reinforced plastic (CFRP) laminates. Composites Parts B 43(4):1791–1799

    Google Scholar 

  33. Prajapati, Navneet K, Patel SM (2013) Optimization of process parameters for surface roughness and material removal rate for SS 316 on CNC turning machine. Int J Res Modern Eng Emerg Technol 1(3):40–47

    Google Scholar 

  34. Palanikumar K (2011) Experimental investigation andoptimization in drilling of GFRP composites. Measurement 44:2138–2148

    Article  Google Scholar 

  35. Kurt M, Bagci E, Kaynak Y (2009) Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. Int J Adv Manuf Technol 40(5–6):458–469

    Google Scholar 

  36. Tsao CC (2012) Evaluation of the drilling-induced delamination of compound core-special drills using response surface methodology based on the Taguchi method. Int J Adv Manuf Technol 62:241–247

    Article  Google Scholar 

  37. Shivapragash B, Chandrasekharan K, Parthasarathy C, Samuel M (2013) Multiple response optimizations in drilling using taguchi and grey relational analysis. Int J Modern Eng Res 3(2):765–768

    Google Scholar 

  38. Sathiya P, Abdul Jaleel MY (2010) Grey based taguchi method for optimization of bead geometry in laser bead-on-plate welding. Adv Prod Eng Manage 5(4):225

    Google Scholar 

  39. Kumar S, Singh I (2016) The influence of process parameters on cutting speed of WEDM using Taguchi’s technique. Int J Emerg Technol. 7(2):332–337. (Special Issue on ICRIET-2016)

    Google Scholar 

  40. Kumar S, Ramola IC, Kumar R (2015) Analysis of surface roughness and material removal rate for high carbon high chromium steel on die sinking EDM using Taguchi technique. SSRG Int J Mech Eng (SSRG-IJME)—EFES. ISSN: 2348–8360

    Google Scholar 

  41. Gaitonde SRK, Paulo Davim J (2009) Multi performance optimization in turning of free-machining steel using Taguchi method and utility concept. J. Mater. Eng. Perform 18:231–236

    Article  Google Scholar 

  42. Durairaj M, Gowri S (2012) Optimization of inconel 600 alloy micro turning process using grey relation analysis. Adv Mater Res 576:548

    Article  Google Scholar 

  43. Kumar S, Jagadish, Singh AK, Kumar N (2020) Multi objective optimization of CNC drilling parameters on HcHcr steel using Taguchi’s based utility concept & GRA-PCA methods. Int J Adv Sci Technol Res 2394–9627, 55–63. (Special issue ICAME-2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Jagadish, Ray, A. (2021). Multi-objective Optimization of CNC Drilling Parameters on Machining of HcHcr Steel Using Taguchi’s Technique and Grey Relational Analysis. In: Ghosh, S.K., Ghosh, K., Das, S., Dan, P.K., Kundu, A. (eds) Advances in Thermal Engineering, Manufacturing, and Production Management. ICTEMA 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-2347-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2347-9_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2346-2

  • Online ISBN: 978-981-16-2347-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics