Skip to main content

Robust Visual Odometry Using Semantic Information in Complex Dynamic Scenes

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1397))

Included in the following conference series:

Abstract

Traditional vision-based simultaneous localization and mapping (SLAM) technology cannot obtain the semantic information of the surrounding environment, which will cause the robot to fail to complete intelligent grasping, human-computer interaction, and other advanced decision tasks. There are many challenges to solve this problem, such as obtaining less semantic information of the environment with low precision and being unable to deal with dynamic objects in a real environment quickly and effectively. In this paper, a robust visual odometry using semantic information in complex dynamic scenes was designed. Specifically, we present a refined instance segmentation method based on the contextual information of the frame to improve the accuracy of segmentation. On this basis, a feature detection and elimination algorithm for dynamic objects based on instance-level semantic information is proposed to improve the localization accuracy of camera pose. We extensively evaluate our system on the public TUM data set and compare it with ORB-SLAM2 and other methods. Experiments show that our methods greatly improve the localization accuracy of the camera pose and the robustness of the system, which verifies that our system is effective in complex dynamic scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garcia-Fidalgo, E., Ortiz, A.: Vision-based topological mapping and localization methods: a survey. Robot. Auton. Syst. 64, 1–20 (2014)

    Article  Google Scholar 

  2. Fuentes-Pacheco, J., Ascencio, J., Rendon-Mancha, J.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43, 55–81 (2015)

    Article  Google Scholar 

  3. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: ISMAR, IEEE, pp. 225–234, January, 2007

    Google Scholar 

  4. Mur-Artal, R., Tardos, J.: Orb-slam2: an open-source slam system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33, 1255–1262, October, 2016

    Google Scholar 

  5. Mur-Artal, R., Montiel, J., Tardos, J.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31, 1147–1163, October, 2015

    Google Scholar 

  6. Rublee, E., Rabaud, V., Konolige, K., et al.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision, IEEE (2012)

    Google Scholar 

  7. Cadena, C., Carlone, L., et al.: Simultaneous localization and mapping: present, future, and the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Google Scholar 

  8. Younes, G., Asmar, D., Shammas, E.: A survey on non-filter-based monocular visual slam systems. Robot. Auton. Syst. 98, 67–88 (2016)

    Article  Google Scholar 

  9. Yu, C., et al.: DS-SLAM: a semantic visual slam towards dynamic environments, pp. 1168–1174, October, 2018

    Google Scholar 

  10. Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X.: Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robot. Auton. Syst. 117, 1–16 (2019)

    Article  Google Scholar 

  11. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42, 386–397, June, 2018

    Google Scholar 

  12. Sturm, J., Engelhard, N., et al.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (2012)

    Google Scholar 

  13. Sun, Y., Liu, M., Meng, M.: Improving RGB-D slam in dynamic environments: a motion removal approach. Robot. Auton. Syst. 89, 110–122 (2016)

    Article  Google Scholar 

  14. Li, S., Lee, D.: RGB-D SLAM in dynamic environments using static point weighting. IEEE Robot. Autom. Lett. 2, 2263–2270, July, 2017

    Google Scholar 

Download references

Acknowledgments

The author(s) disclosed receipt of the following financial this article: This work was supported by National Natural Science Foundation of China (No.61872327), Fundamental Research Funds for Central Universities (No. ACAIM190102), Natural Science Foundation of Anhui Province (No. 1708085MF146), the Project of Collaborative Innovation in Anhui Colleges and Universities (Grant No.GXXT-2019-003), the Open Fund of Key Laboratory of Flight Techniques and Flight Safety, (Grant No.2018KF06), Scientific Research Project of Civil Aviation Flight University of China (Grant No.J2020-125) and Open Fund of Key Laboratory of Flight Techniques and Flight Safety, CAAC (Grant No. FZ2020KF02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baofu Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Wang, L., Fang, B. (2021). Robust Visual Odometry Using Semantic Information in Complex Dynamic Scenes. In: Sun, F., Liu, H., Fang, B. (eds) Cognitive Systems and Signal Processing. ICCSIP 2020. Communications in Computer and Information Science, vol 1397. Springer, Singapore. https://doi.org/10.1007/978-981-16-2336-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2336-3_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2335-6

  • Online ISBN: 978-981-16-2336-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics