Skip to main content

Microbes for the Synthesis of Chitin from Shrimp Shell Wastes

  • Chapter
  • First Online:
Application of Microbes in Environmental and Microbial Biotechnology

Abstract

Shrimp meat is consumed globally on a large scale, and their processing releases a large amount of shell waste. The major constituents of shrimp shells are chitin, proteins, calcium carbonate, and lipids. To extract chitin from the shrimp shell, it has to undergo deproteination (DP) to remove the proteins and demineralization (DM) to separate the minerals. Traditionally shrimp shell wastes were dried and directly added as a fertilizer to soil or added in animal feed or dumped in landfills. In recent years, shrimp shell wastes are valorized for producing chitin, chitosan, and other beneficial products like protein hydrolysates, carotenoids, lactic acid, etc. Industries producing chitin are employing chemicals like hydrochloric acid and sodium hydroxide for demineralization and deproteination, respectively, and the residual water is dumped into the water bodies. Considering environmentally friendly approaches, the usage of microorganisms has been tried out for chitin extraction from the shrimp shell. The recent review highlights the production of chitin using microorganisms and mentions other recent greener approaches in chitin production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany HM, Salem ME-S (2020) Effects of dietary chitosan supplementation on farmed fish; a review. Rev Aquac 12(1):438–452. https://doi.org/10.1111/raq.12326

    Google Scholar 

  • Adour L, Arbia W, Amrane A, Mameri N (2008) Combined use of waste materials – recovery of chitin from shrimp shells by lactic acid fermentation supplemented with date juice waste or glucose. J Chem Technol Biotechnol 83:1664–1669. https://doi.org/10.1002/jctb.1980

    CAS  Google Scholar 

  • Akkaya G, Uzun I, Güzel F (2009) Adsorption of some highly toxic dyestuffs from aqueous solution by chitin and its synthesized derivatives. Desalination 249:1115–1123. https://doi.org/10.1016/j.desal.2009.05.014

    CAS  Google Scholar 

  • Allan G, Crospy GD, Lee JH, Miller ML, Reif WM (1980) Proceedings of a symposium on man made polymers in papermaking. In. Helsinki, Finland

    Google Scholar 

  • Anastopoulos I, Bhatnagar A, Bikiaris DN, Kyzas GZ (2017) Chitin adsorbents for toxic metals: a review. Int J Mol Sci 18(1):114. https://doi.org/10.3390/ijms18010114

    CAS  Google Scholar 

  • Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39(9):1644–1667. https://doi.org/10.1016/j.progpolymsci.2014.02.008

    CAS  Google Scholar 

  • Aranaz I, Acosta N, Civera C, Elorza B, Mingo J, Castro C et al (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10:213. https://doi.org/10.3390/polym10020213

    CAS  Google Scholar 

  • Aranday-García R, Román Guerrero A, Ifuku S, Shirai K (2017) Successive inoculation of Lactobacillus brevis and Rhizopus oligosporus on shrimp wastes for recovery of chitin and added-value products. Process Biochem 58:17–24. https://doi.org/10.1016/j.procbio.2017.04.036

    CAS  Google Scholar 

  • Aranday-García R, Saimoto H, Shirai K, Ifuku S (2019) Chitin biological extraction from shrimp wastes and its fibrillation for elastic nanofiber sheets preparation. Carbohydr Polym 213:112–120. https://doi.org/10.1016/j.carbpol.2019.02.083

    CAS  Google Scholar 

  • Aytekin O, Elibol M (2009) Cocultivation of Lactococcus lactis and Teredinobacter turnirae for biological chitin extraction from prawn waste. Bioprocess Biosyst Eng 33:393–399. https://doi.org/10.1007/s00449-009-824

    Google Scholar 

  • Babu CM, Chakrabarti R, Sambasivarao KRS (2008) Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids. LWT- Food Sci Technol 41:227–235

    CAS  Google Scholar 

  • Bahasan SHO, Satheesh S, Ba-akdah MA (2017) Extraction of chitin from the Shell wastes of two shrimp species Fenneropenaeus semisulcatus and Fenneropenaeus indicus using microorganisms. J Aquat Food Prod Technol 26:16. https://doi.org/10.1080/10498850.2016.1188191

    CAS  Google Scholar 

  • Bajaj M, Freiberg A, Winter J et al (2015) Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures. Appl Microbiol Biotechnol 99:9835–9846. https://doi.org/10.1007/s00253-015-6841-5

    CAS  Google Scholar 

  • Baran A, Biçak E, Baysal H, Önal S (2007) Comparative studies on the adsorption of Cr(VI) ions on to various sorbents. Bioresour Technol 98:661–665. https://doi.org/10.1016/j.biortech.2006.02.020

    CAS  Google Scholar 

  • Barros FCF, Vasconcellos LCG, Carvalho TV, Nascimento RF (2014) Removal of petroleum spill in water by chitin and chitosan. Orbital: The Electronic J Chem 6(1):70–74

    CAS  Google Scholar 

  • Beaney P, Lizardi-Mendoza J, Healy M (2005) Comparison of chitins produced by chemical and bioprocessing methods. J Chem Technol Biotechnol 80:145–150. https://doi.org/10.1002/jctb.1164

    CAS  Google Scholar 

  • Benguella B, Benaissa H (2002) Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res 36(10):2463–2474. https://doi.org/10.1016/S0043-1354(01)00459-6

    CAS  Google Scholar 

  • Bhaskar N, Suresh PV, Sakhare PZ, Sachindra NM (2007) Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzym Microb Technol 40:1427–1434. https://doi.org/10.1016/j.enzmictec.2006.10.019

    CAS  Google Scholar 

  • Bough WA, Salter WL, Wu ACM, Perkins BE (1978) Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. Chemical composition, viscosity, and molecular-weight distribution of chitosan products. Biotechnol Bioeng 20:1931–1943

    CAS  Google Scholar 

  • Bustos RO, Healy MG (1994) Microbial deproteinization of waste prawn shell. In: proceedings of the second international symposium on environmental biotechnology, Brighton, UK. pp. 15–25

    Google Scholar 

  • Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P (2019) Chitin and Chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 17(6):369. https://doi.org/10.3390/md17060369

    CAS  Google Scholar 

  • Charoenvuttitham P, Shi J, Mittal GS (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41:1135–1153. https://doi.org/10.1080/01496390600633725

    CAS  Google Scholar 

  • Cheba BA (2011) Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Biotechnol Biochem 6:149–153

    Google Scholar 

  • Choorit W, Patthanamanee W, Manurakchinakorn S (2008) Use of response surface method for the determination of demineralization efficiency in fermented shrimp shells. Bioresour Technol 99:6168–6173. https://doi.org/10.1016/j.biortech.2007.12.032

    CAS  Google Scholar 

  • Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37:1359–1366

    CAS  Google Scholar 

  • Damodarasamy A, Baby S, Ramachandran R (2012) Microbial deproteinization of shrimp shell waste for chitin production by wild strains of Serratia marcescens. Electronic J Environ Agri Food Chem 11(5):469–476

    Google Scholar 

  • Değim Z, Celebi N, Sayan H, Babül A, Erdoğan D, Take G (2002) An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22(2):187–198. https://doi.org/10.1007/s007260200007

    Google Scholar 

  • Devi R, Dhamodharan R (2018) Pretreatment in hot glycerol for facile and green separation of chitin from prawn shell waste. ACS Sustain Chem Eng 6:846–853. https://doi.org/10.1021/acssuschemeng.7b03195

    CAS  Google Scholar 

  • Díaz-Rojas E, Argüelles-Monal WM, Higuera-Ciapara I, Hernández J, Lizardi-Mendoza J, Goycoolea FM (2006) Determination of chitin and protein contents during the isolation of chitin from shrimp waste. Macromol Biosci 6:340–347. https://doi.org/10.1002/mabi.200500233

    CAS  Google Scholar 

  • Doan CT, Tran TN, Wen I-H, Nguyen VB, Nguyen AD, Wang S-L (2019a) Conversion of shrimp head waste for production of a Thermotolerant, detergent-stable, Alkaline Protease by Paenibacillus sp Catalysts. (9):798. doi:https://doi.org/10.3390/catal9100798

  • Doan CT, Tran TN, Nguyen VB, Vo TPK, Nguyen AD, Wang SL (2019b) Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int J Biol Macromol 131:706–715. https://doi.org/10.1016/j.ijbiomac.2019.03.117

    CAS  Google Scholar 

  • Duan S, Zhang Y, Lu T, Cao D, Chen J (2011) Shrimp waste fermentation using symbiotic lactic acid bacteria. Adv Mater Res 196:2156–2163

    Google Scholar 

  • Duan S, Li L, Zhuang Z, Wu W, Hong S, Zhou J (2012) Improved production of chitin from shrimp waste by fermentation with epiphytic lactic acid bacteria. Carbohydr Polym 89(4):1283–1288. https://doi.org/10.1016/j.carbpol.2012.04.051

    CAS  Google Scholar 

  • Duong NTH, Nghia ND (2014) Kinetics and optimization of the Deproteinization by pepsin in chitin extraction from white shrimp Shell. J Chitin Chitosan Sci 2:21–28. https://doi.org/10.1166/jcc.2014.1054

    Google Scholar 

  • Dutta PK, Dutta J, Tripathi V (2004) Chitin and chitosan: chemistry, properties and applications. JSIR, Delhi, India

    Google Scholar 

  • El Knidri H, El Khalfaouy R, Laajeb A, Addaou A, Lahsini A (2016) Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf Environ Prot 104:395–405. https://doi.org/10.1016/j.psep.2016.09.020

    CAS  Google Scholar 

  • Elhussieny A, Faisal M, D’Angelo G, Aboulkhair NT, Everitt NM, Fahim IS (2020) Valorisation of shrimp and rice straw waste into food packaging applications. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2020.01.008

  • Evers D, Carroll D (1998) Ensiling salt-preserved shrimp waste with grass straw and molasses. Anim Feed Sci Technol 71(3–4):241–249. https://doi.org/10.1016/s0377-8401(97)00145-4

    CAS  Google Scholar 

  • Fadli A, Maulana S, Drastinawati (2018) Shrinking core model of demineralization of chitin isolation from shrimp shell. MATEC Web of Conferences 154:01014. https://doi.org/10.1051/matecconf/201815401014

    CAS  Google Scholar 

  • Fagbenro OA (1996) Preparation, properties and preservation of lactic acid fermented shrimp heads. Food Res Int 29:595–599. https://doi.org/10.1016/s0963-9969(96)00077-4

    Google Scholar 

  • FAO (2020) The State of World Fisheries and Agriculture, Food and Agricultural Organization of the United Nations. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Francisco FC, Simora RMC, Nuñal SN (2015) Deproteination and demineralization of shrimp waste using lactic acid bacteria for the production of crude chitin and chitosan. AACL Bioflux 8:107–115

    Google Scholar 

  • Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: A brief review on production to purification. J Radiat Res Appl Sci 7(2):222–229. https://doi.org/10.1016/j.jrras.2014.03.002

    CAS  Google Scholar 

  • Ghorbel-Bellaaj O, Younes I, Maalej H, Hajji S, Nasri M (2012a) Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 51:1196–1201. https://doi.org/10.1016/j.ijbiomac.2012.08.034

    CAS  Google Scholar 

  • Ghorbel-Bellaaj O, Jridi M, Khaled HB, Jellouli K, Nasri M (2012b) Bioconversion of shrimp shell waste for the production of antioxidant and chitosan used as fruit juice clarifier. Int J Food Sci Technol 47:1835–1841. https://doi.org/10.1111/j.1365-2621.2012.03039.x

    CAS  Google Scholar 

  • Global Chitosan Derivatives Market (2019) By manufacturers, regions, type and application. Global Info Research

    Google Scholar 

  • Gomaa EZ (2018) Iron nanoparticles α-chitin nanocomposite for enhanced antimicrobial, dyes degradation and heavy metals removal activities. J Polym Environ 26:3638–3654. https://doi.org/10.1007/s10924-018-1247-y

    CAS  Google Scholar 

  • Gopalakannan A, Indra Jasmine G, Shanmugam SA, Sugumar G (2000) Application of proteolytic enzyme, papain for the production of chitin and chitosan from shrimp waste. J Mar Biol Assoc India 42:167–172

    Google Scholar 

  • Hahn T, Bossog L, Hager T, Wunderlich W, Breier R, Stegmaier T, Zibek S (2019) Chitosan application in textile processing and fabric coating. In: Broek LA, Boeriu CG (eds) chitin and chitosan. doi:https://doi.org/10.1002/9781119450467.ch16

  • Hamdi M (2017) Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int J Biol Macromol 101:455–463. https://doi.org/10.1016/j.ijbiomac.2017.02.103

    CAS  Google Scholar 

  • Harkin C, Mehlmer N, Woortman DV, Brück TB, Brück WM (2019) Nutritional and additive uses of chitin and chitosan in the food industry, Sustainable agriculture reviews, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-16581-9_1

    Google Scholar 

  • Hayes M, Carney B, Slater J, Brück W (2008) Mining marine shellfish wastes for bioactive molecules: chitin and chitosan and ash; part A: extraction methods. Biotechnol J 3(7):871–877. https://doi.org/10.1002/biot.200700197

    CAS  Google Scholar 

  • Healy M, Green MH, A. (2003) Bioprocessing of marine crustacean shell waste. Acta Biotechnol 23:151–160

    CAS  Google Scholar 

  • Hongkulsup C, Khutoryanskiy VV, Niranjan K (2016) Enzyme assisted extraction of chitin from shrimp shells (Litopenaeus vannamei). J Chem Technol Biotechnol 91:1250–1256. https://doi.org/10.1002/jctb.4714

    CAS  Google Scholar 

  • Hossain MS, Iqbal A (2014) Production and characterization of chitosan from shrimp waste. J Bangladesh Agril Univ 12(1):153–160

    Google Scholar 

  • Hu Z, Gänzle MG (2019) Challenges and opportunities related to the use of chitosan as a food preservative. J Appl Microbiol 126(5):1318–1331. https://doi.org/10.1111/jam.14131

    CAS  Google Scholar 

  • Huang L, Xiao L, Yang G (2018a) Chitosan application in textile processing. Mini-review. 4(2):0032-0034. doi:10.19080/CTFTTE.2018.04.555635

    Google Scholar 

  • Huang WC, Zhao D, Guo N, Xue C, Mao X (2018b) Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. J Agric Food Chem 66:11897–11901. https://doi.org/10.1021/acs.jafc.8b03847

    CAS  Google Scholar 

  • Hülsey MJ (2018) Shell biorefinery: A comprehensive introduction. Green energy Environ 3:318–327. https://doi.org/10.1016/j.gee.2018.07.007

    Google Scholar 

  • İlyasoğlu H, Anankanbil S, Nadzieja M (2018) Lipophilization of chitin as novel polymeric stabilizer for improved oil-in-water emulsions. Colloid Polym Sci 296:1841–1848. https://doi.org/10.1007/s00396-018-4410-z

    CAS  Google Scholar 

  • Ioelovich M (2014) Crystallinity and Hydrophility of chitin and chitosan. J Chem 3(3):7–14

    Google Scholar 

  • Jaafarzadeh N, Mengelizadeh N, Takdastan A, Farsani MH, Niknam N, Aalipour M, Hadei M, Bahrami P (2015) Biosorption of heavy metals from aqueous solutions onto chitin. Int J Environ Health Eng 4:1–7

    CAS  Google Scholar 

  • Jaganathan K, Raffi SM, Soundarapandian P (2016) Extraction and characterization of chitin from marine bycatch crustaceans employing fermentation method. World J Pharm Pharm Sci 5(1):1290–1301

    CAS  Google Scholar 

  • Junianto WB, Setyahadi S (2013) Selection of methods for microbiological extraction of chitin from shrimp shells. Microbiol Indonesia 7(2):75–83. https://doi.org/10.5454/mi.7.2.5

    Google Scholar 

  • Kartal SN, Imamura Y (2005) Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan. Bioresour Technol 96:389–392. https://doi.org/10.1016/j.biortech.2004.03.004

    CAS  Google Scholar 

  • Kaur S, Dhillon GS (2015) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 35(1):44–61. https://doi.org/10.3109/07388551.2013.798256

    CAS  Google Scholar 

  • Kaya M, Baran T, Karaarslan M (2015) A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res 29:1477–1480

    CAS  Google Scholar 

  • Khanafari A, Marandi R, Sanatei SH (2008) Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. J Environ Health Sci 5:19–24

    CAS  Google Scholar 

  • Khempaka S, Mochizuki M, Koh K, Karasawa Y (2006) Effect of chitin in shrimp meal on growth performance and digestability in growing broilers. J Poult Sci 43(4):339–343

    CAS  Google Scholar 

  • Khorrami M, Najafpour GD, Younesi H, Amini GH (2011) Growth kinetics and demineralization of shrimp Shell using Lactobacillus plantarum PTCC 1058 on various carbon sources. Iran J Energy Environ 2:320–325. https://doi.org/10.5829/idosi.ijee.2011.02.04.2391

    Google Scholar 

  • Kjartansson GT, Zivanovic S, Kristbergsson K, Weiss J (2006) Sonication-assisted extraction of chitin from North Atlantic shrimps (Pandalus borealis). J Agr Food Chem 54:5894–5902. https://doi.org/10.1021/jf060646w

    CAS  Google Scholar 

  • Kumar Gadgey K, Bahekar A (2017) Studies on extraction methods of chitin from crab shell and investigation of its mechanical properties. Int J Mech Eng Technol 8:220–231

    Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226. https://doi.org/10.1007/s10126-005-0097-5

    CAS  Google Scholar 

  • Lertsutthiwong P, How NC, Chandrkrachang S, Stevens WF (2002) Effect of chemical treatment on the characteristics of shrimp chitosan. J Met Mat Miner 12(1):11–18

    CAS  Google Scholar 

  • Lim S-H, Hudson SM (2003) Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals. J Macromol Sci Part C Polym Rev 43:223–269. https://doi.org/10.1081/MC-120020161

    CAS  Google Scholar 

  • Liu P, Liu S, Guo N, Mao X, Lin H, Xue C, Wei D (2014) Cofermentation of Bacillus licheniformis and Gluconobacter oxydans for chitin extraction from shrimp waste. Biochem Eng J 91:10–15. https://doi.org/10.1016/j.bej.2014.07.004

    CAS  Google Scholar 

  • Longhinotti E, Pozza F, Furlan L, Sanchez MNM, Klug M, Laranjeira MCM, Fávere VT (1998) Adsorption of anionic dyes on the biopolymer chitin. J Braz Chem Soc 9:435–440. https://doi.org/10.1590/S0103-50531998000500005

    CAS  Google Scholar 

  • Madhavan P, Nair KGR (1974) Utilisation of prawn waste-isolation of chitin and its conversion to chitosan. Fish Technol 11:50–53

    CAS  Google Scholar 

  • Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of Deproteinized crustacean shells for chitin production. American J Biochem Biotechnol 3(1):1–9. https://doi.org/10.3844/ajbbsp.2007.1.9

    CAS  Google Scholar 

  • Malerba M, Cerana R (2019) Recent applications of chitin- and chitosan-based polymers in plants. Polymer (Basel) 11:839. https://doi.org/10.3390/polym11050839

    CAS  Google Scholar 

  • Mao X, Guo N, Sun J, Xue C (2017) Comprehensive utilization of shrimp waste based on biotechnological methods: A review. J Clean Prod 143:814–823. https://doi.org/10.1016/j.jclepro.2016.12.042

    CAS  Google Scholar 

  • Maruthiah T, Palavesam A (2017) Characterization of Haloalkalophilic organic solvent tolerant protease for chitin extraction from shrimp Shell waste. Int J Biol Macromol 97:552–560. https://doi.org/10.1016/j.ijbiomac.2017.01.021

    CAS  Google Scholar 

  • Mathew P, Nair KGR (2006) Ensilation of shrimp waste by Lactobacillus fermentum. Fish Technol 43:59–64

    Google Scholar 

  • Meshkat SS, Nezhad MN, Bazmi MR (2019) Investigation of Carmine Dye Removal by Green Chitin Nanowhiskers Adsorbent Emerg Sci J. 3(3):187–194. doi:10.28991/esj-2019-01181

    Google Scholar 

  • Mizani M, Aminlari M, Khodabandeh M (2005) An effective method for producing a nutritive protein extract powder from shrimp head waste. Food Sci Tech Int 11:49–54. https://doi.org/10.1177/1082013205051271

    CAS  Google Scholar 

  • Moorjani MN, Achutha V, Khasim DI (1975) Parameters affecting the viscosity of chitosan from prawn waste. J Food Sci Technol 12:187–189

    CAS  Google Scholar 

  • Narayan B, Velappan SP, Zituji SP, Manjabhatta SN, Gowda LR (2010) Yield and chemical composition of fractions from fermented shrimp biowaste. Waste Manag Res 28(1):64–70. https://doi.org/10.1177/0734242X09337658

    CAS  Google Scholar 

  • Neves AC, Zanette C, Grade ST, Schaffer JV, Alves HJ, Arantes MK (2017) Optimization of lactic fermentation for extraction of chitin from freshwater shrimp waste. Acta Scientiarum Technol 39(2):125–133

    Google Scholar 

  • Nishimura S (2001) Chemical biology and biomedicine: general aspects. In: Fraser-Reid BO, Tastuta K, Thiem J (eds) Glycoscience: chemistry and chemical biology. Springer, New York

    Google Scholar 

  • No HK, Meyers SP (1995) Preparation and characterization of chitin and chitosan—A review. J Aquat Food Prod Technol 4:27–52. https://doi.org/10.1300/J030v04n02_03

    CAS  Google Scholar 

  • Oh Y-S, Shih I-L, Tzeng Y-M, Wang S-L (2000) Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzym Microb Technol 27(1–2):3–10. https://doi.org/10.1016/s0141-0229(99)00172-6

    CAS  Google Scholar 

  • Pachapur VL, Guemiza K, Rouissi T, Sarma SJ, Brar SK (2016) Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J Chem Technol Biotechnol 91:2331–2339

    CAS  Google Scholar 

  • Pacheco N, Garnica-Gonzalez M, Gimeno M, Bárzana E, Trombotto S, David L, Shirai K (2011) Structural characterization of chitin and chitosan obtained by biological and chemical methods. Biomacromolecules 12:3285–3290. https://doi.org/10.1021/bm200750t

    CAS  Google Scholar 

  • Parada RY, Egusa M, Aklog YF, Miura C, Ifuku S, Kaminaka H (2018) Optimization of nanofibrillation degree of chitin for induction of plant disease resistance: elicitor activity and systemic resistance induced by chitin nanofiber in cabbage and strawberry. Int J Biol Macromol 118:2185–2192. https://doi.org/10.1016/j.ijbiomac.2018.07.089

    CAS  Google Scholar 

  • Paul T, Halder SK, Das A (2015) Production of chitin and bioactive materials from black tiger shrimp (Penaeus monodon) shell waste by the treatment of bacterial protease cocktail. 3. Biotech 5:483–493

    Google Scholar 

  • Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4:12–18. https://doi.org/10.1021/bm025602k

    CAS  Google Scholar 

  • Ploydee E, Chaiyanan S (2014) Production of high viscosity chitosan from biologically purified chitin isolated by microbial fermentation and deproteinization. Int J Polymer Sci 2014:1–8. https://doi.org/10.1155/2014/162173

    CAS  Google Scholar 

  • Prameela K, Mohan CM, Smitha PV, Hemalatha KPJ (2010) Bioremediation of shrimp biowaste by using natural probiotic for chitin and carotenoid production an alternative method to hazardous chemical method. IJABPT 1:903–910

    Google Scholar 

  • Pusztahelyi (2018) Chitin and chitin-related compounds in plant–fungal interactions. Mycology 9(3):189–201. https://doi.org/10.1080/21501203.2018.1473299

    CAS  Google Scholar 

  • Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12(6):968–971. https://doi.org/10.1039/C003583A

    CAS  Google Scholar 

  • Ramirez-Coutino L, Marin-Cervantes MDC, Huerta S, Revah S, Shirai K (2006) Enzymatic hydrolysis of chitin in the production of oligosaccharides using Lecanicillium fungicola chitinases. Process Biochem 41:1106–1110. https://doi.org/10.1016/j.procbio.2005.11.021

    CAS  Google Scholar 

  • Rao MS, Stevens WF (2006) Fermentation of shrimp biowaste under different salt concentrations with amylolytic and non-amylolytic Lactobacillus strains for chitin production. Food Technol Biotechnol 44:83–87. https://doi.org/10.1007/s002530000449

    CAS  Google Scholar 

  • Rao MS, Muñoz J, Stevens WF (2000) Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol 54:808–813. https://doi.org/10.1007/s002530000449

    CAS  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Google Scholar 

  • Regis B, Marius S, Sandrine B, Roux KL, Del Pino RJ, Jean-Pascal B et al (2015) Kinetic study of solid phase demineralization by weak acids in one-step enzymatic bio-refinery of shrimp cuticles, vol 50. Elsevier Ltd, pp 2215–2223. https://doi.org/10.1016/j.procbio.2015.09.017

    Google Scholar 

  • Robinson-Lora MA, Brennan RA (2009) The use of crab-shell chitin for biological denitrification: batch and column tests. Bioresour Technol 100:534–541. https://doi.org/10.1016/j.biortech.2008.06.052

    CAS  Google Scholar 

  • Sahu BB, Sahu U, Nagesh Kumar Barik AA, Paikaray A, Mohapatra S, Sahu JK (2017) Bio-refinery products from shell fish processing waste: application of chitin, chitosan, Chitooligosaccharides and derivatives in organic agriculture. Int J Fish Aquat Res 2:27–31

    Google Scholar 

  • Salaberria AM, Labidi J, Fernandes SCM (2015) Different routes to turn chitin into stunning nano-objects. Eur Polym J 68:503–515. https://doi.org/10.1016/j.eurpolymj.2015.03.005

    CAS  Google Scholar 

  • Sánchez R, Stringari GB, Franco JM, Valencia C, Gallegos C (2011) Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohydr Polym 85(3):705–714. https://doi.org/10.1016/j.carbpol.2011.03.049

    CAS  Google Scholar 

  • Sedaghat F, Yousefzadi M, Toiserkani H, Najafipour S (2017) Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: an alternative procedure for chemical extraction of chitin and chitosan. Int J Biol Macromol 104:883–888. https://doi.org/10.1016/j.ijbiomac.2017.06.099

    CAS  Google Scholar 

  • Setyahadi S, Hermansyah H, Aruan JB (2014) Chitin extraction fermentation Penaeus vannamei Shell wastes with high density cell by recycle culture cells. J Chitin Chitosan Sci 2:209–215. https://doi.org/10.1166/jcc.2014.1061

    Google Scholar 

  • Shamshina JL, Barber PS, Gurau G, Griggs CS, Rogers RD (2016) Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustain Chem Engin 4(11):6072–6081. https://doi.org/10.1021/acssuschemeng.6b01434

    CAS  Google Scholar 

  • Shamshina JL, Oldham T, Rogers RD (2019) Applications of chitin in agriculture. In: Sustainable agriculture reviews. vol 36. pp. 125–146

    Google Scholar 

  • Shimahara K, Takiguchi Y, Ohkouchi K, Kitamura K, Okada O (1984) Chemical composition and some properties of crustacean chitin prepared by use of proteolytic activity of Pseudomonas maltophilia LC102. Chitin, chitosan, and related enzymes. Academic press, New York

    Google Scholar 

  • Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res 342:2423–2429. https://doi.org/10.1016/j.carres.2007.06.028

    CAS  Google Scholar 

  • Sluyanarayana Rao SV, Yashodha KP, Mahendrakar NSP (1987) Deacetylation of chitin at low temperature by a novel alkali impregnation technique. Indian J Technol 25:194–196

    Google Scholar 

  • Song Z, Li G, Guan F, Liu W (2018) Application of chitin/chitosan and their derivatives in the papermaking industry. Polymers 10(4):389. https://doi.org/10.3390/polym10040389

    CAS  Google Scholar 

  • Soon CY, Tee YB, Tan CH, Rosnita AT, Khalina A (2018) Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int J Biol Macromol 108:135–142. https://doi.org/10.1016/j.ijbiomac.2017.11.138

    CAS  Google Scholar 

  • Sorokulova I, Krumnow A, Globa L, Vodyanoy V (2009) Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum. J Ind Microbiol Biotechnol 36:1123–1126. https://doi.org/10.1007/s10295-009-0587-y

    CAS  Google Scholar 

  • Srinivasa PC, Tharanathan RN (2007) Chitin/chitosan — safe, ecofriendly packaging materials with multiple potential uses. Food Rev Int 23(1):53–72. https://doi.org/10.1080/87559120600998163

    CAS  Google Scholar 

  • Srinivasan H, Kanayairam V, Ravichandran R (2018) Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int J Biol Macromol 107:662–667. https://doi.org/10.1016/j.ijbiomac.2017.09.035

    CAS  Google Scholar 

  • Sumardiono S, Siqhny ZD (2018) Production of fish feed from soy residue and shrimp waste using tapioca as binding agent. In: the 3rd international conference of chemical and materials engineering, Semarang, Indonesia. J Phys Conf Ser

    Google Scholar 

  • Suryawanshi N, Jujjavarapu SE, Ayothiraman S (2019) Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. Int J Environ Sci Technol 16:3877–3898. https://doi.org/10.1007/s13762-018-02204-3

    CAS  Google Scholar 

  • Suryawanshi N, Ayothiraman S, Jujjavarapu SE (2020) Ultrasonication mode for the expedition of extraction process of chitin from the maritime shrimp shell waste. Indian J Biochem Bio 57:431–438

    CAS  Google Scholar 

  • Tan YN, Lee PP, Chen WN (2020) Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Expr 10:17. https://doi.org/10.1186/s13568-020-0954-7

    CAS  Google Scholar 

  • Teng WL, Khor E, Tan TK, Lim LY, Tan SC (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332(3):305–316. https://doi.org/10.1016/s0008-6215(01)00084-2

    CAS  Google Scholar 

  • The Marine Products Export Development Authority [MPEDA] (2013) Annual report

    Google Scholar 

  • Valdez-Peña AU, Espinoza-Perez JD, Sandoval-Fabian GC (2010) Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Sci Biotechnol 19:553–557. https://doi.org/10.1007/s10068-010-0077-z

    CAS  Google Scholar 

  • Vandenbergh PA (1993) Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12:221–238

    CAS  Google Scholar 

  • Verma ML, Kumar S, Das A, Randhawa JS, Chamundeeswari M (2020) Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 18:315–323

    CAS  Google Scholar 

  • Wang SL, Chio SH (1998) Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187–waste pretreatment, enzyme production, process design, and economic analysis. Enzym Microb Technol 22:629–633

    CAS  Google Scholar 

  • Woods B (1998) Microbiology of fermented foods, vol 1. Blackie, London

    Google Scholar 

  • Wu ACM, Bough WA (1977) A study of variables in the chitosan manufacturing process in relation to molecular-weight distribution, chemical characteristics and waste-treatment effectiveness. In: Muzzarelli RAA, Pariser ER (eds) Proceedings of the 1st International Conference on Chitin/Chitosan, Boston, USA, 11–13, April, 1978. pp 88–102

    Google Scholar 

  • Ximenes JCM, Hissa DC, Ribeiro LH, Rocha MVP, Oliveira EG, Melo VMM (2019) Sustainable recovery of protein-rich liquor from shrimp farming waste by lactic acid fermentation for application in tilapia feed. Braz J Microbiol 50(1):195–203. https://doi.org/10.1007/s42770-018-0024-3

    CAS  Google Scholar 

  • Xu Y, Gallert C, Winter J (2008) Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl Microbiol Biotechnol 79:687–697. https://doi.org/10.1007/s00253-008-1471-9

    CAS  Google Scholar 

  • Xue W, Han Y, Tan J, Wang Y, Wang G, Wang H (2018) Effects of nanochitin on the enhancement of the grain yield and quality of winter wheat. J Agric Food Chem 66:6637–6645. https://doi.org/10.1021/acs.jafc.7b00641

    CAS  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174. https://doi.org/10.3390/md13031133

    CAS  Google Scholar 

  • Younes I, Ghorbel-Bellaaj O, Nasri R, Chaabouni M, Rinaudo M, Nasri M (2012) Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem 47(12):2032–2039. https://doi.org/10.1016/j.procbio.2012.07.017

    CAS  Google Scholar 

  • Zakaria Z, Hall GM, Shama G (1998) Lactic acid fermentation of scampi waste in a rotating horizontal bioreactor for chitin recovery. Process Biochem 33(1):1–6. https://doi.org/10.1016/S0032-9592(97)00069-1

    CAS  Google Scholar 

  • Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bioeng Rev 2:204–226. https://doi.org/10.1002/cben.201400025

    Google Scholar 

  • Zhang H, Yafang Jin Y, Yun Deng Y, Danfeng Wang D, Zhao Y (2012) Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr Res 362:13–20

    CAS  Google Scholar 

  • Zhang W, Yin B, Xin Y et al (2019) Preparation, mechanical properties, and biocompatibility of graphene oxide-reinforced chitin monofilament absorbable surgical sutures. Mar Drugs 17(4):210. https://doi.org/10.3390/md17040210

    CAS  Google Scholar 

  • Zhao D, Huang WC, Guo N, Zhang S, Xue C, Mao X (2019) Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polym (Basel) 11:409. https://doi.org/10.3390/polym11030409

    CAS  Google Scholar 

  • Zhou D, Zhang L, Guo S (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762. https://doi.org/10.1016/j.watres.2005.06.033

    CAS  Google Scholar 

Download references

Acknowledgments

Gincy Marina Mathew thanks and acknowledges the Women Scientists Division, Kerala State Council for Science, Technology and Environment, for the financial assistance under the “Back-to-Lab” Post-Doctoral Fellowship Programme, Kerala, India. Raveendran Sindhu acknowledges the Department of Science and Technology for sanctioning a project under DST WOS-B scheme.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathew, G.M., Sukumaran, R.K., Sindhu, R., Binod, P., Pandey, A. (2022). Microbes for the Synthesis of Chitin from Shrimp Shell Wastes. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Application of Microbes in Environmental and Microbial Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-2225-0_15

Download citation

Publish with us

Policies and ethics