Skip to main content

Non Orthogonal Multiple Access Techniques for Next Generation Wireless Networks: A Review

  • Conference paper
  • First Online:
Proceedings of the International e-Conference on Intelligent Systems and Signal Processing

Abstract

Future needs of wireless and cellular communication in current, as well as the next decade, require to support many services like system average throughput, mobile traffic explosion, live HD streaming, enhanced location-based services (LBS), M2M communication, cloud computing, etc. These bring many challenges in capacity, coverage, data rate, and spectral efficiency. Traditional Orthogonal Multiple Access techniques (OMA) can't fulfill these basic requirements of next generation networks. However, by allocating the same radio resources to many users, the system capacity and user throughput can be improved. Non-Orthogonal Multiple Access technique has recently been recommended for the fifth generation (5G) and beyond fifth generation networks (5G+) which can address such issues. By non-orthogonally allocating many users, the capacity and spectral efficiency can be improved. NOMA scheme can be categorized into two main classes: Power domain and Code Domain. This survey paper centers on the Power domain NOMA technique with superposition coding plus Successive interference cancellation at transmitter and receiver, respectively, as well as sum-rate analysis of NOMA in uplink and downlink. The blend of NOMA with MIMO and massive MIMO in addition to the performance of NOMA in the cellular network has been discussed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITU-R, IMT vision—framework and overall objectives of the future development of IMT for 2020 and beyond. Itu-R M.2083-0 (2015), https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M

  2. International Telecommunications Union, Future technology trends of terrestrial IMT systems. Int. Telecommun. Union (2014)

    Google Scholar 

  3. J. He, Z. Tang, Z. Che, Fast and efficient user pairing and power allocation algorithm for non-orthogonal multiple access in cellular networks. Electron. Lett. 52(25), 2065–2067 (2016)

    Article  Google Scholar 

  4. A. Singh, K.K. Naik, C.R.S. Kumar, Impact of SC-FDMA and pilots on PAPR and performance of power domain NOMA-UFMC system, in International Conference on Ubiquitous and Future Networks, ICUFN, vol. 2018 (2018), pp. 507–511

    Google Scholar 

  5. H. Sadia, M. Zeeshan, S.A. Sheikh, Performance analysis of downlink power domain NOMA under fading channels, in 12th International Conference on ELEKTRO 2018 (2018), pp. 1–6

    Google Scholar 

  6. J. Zhang, J. Ge, Q. Ni, M. Wen, Y. Zhang, Performance analysis of user ordering schemes in cooperative power-domain non-orthogonal multiple access network. IEEE Access 6(c), 47319–47331 (2018)

    Google Scholar 

  7. L. Lei, D. Yuan, C.K. Ho, S. Sun, Power and channel allocation for non-orthogonal multiple access in 5G systems: tractability and computation. IEEE Trans. Wirel. Commun. 15(12), 8580–8594 (2016)

    Article  Google Scholar 

  8. A. Kassir, R.A. Dziyauddin, H.M. Kaidi, M.A. Mohd Izhar, Power domain non-orthogonal multiple access: a review, in 2018 2nd International Conference on Telematics and Future Generation Networks, TAFGEN 2018 (2018), pp. 66–71

    Google Scholar 

  9. S.M.R. Islam, N. Avazov, O.A. Dobre, K.S. Kwak, Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2017)

    Article  Google Scholar 

  10. X. Yan et al., The application of power-domain non-orthogonal multiple access in satellite communication networks. IEEE Access 7, 63531–63539 (2019)

    Article  Google Scholar 

  11. L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, L. Hanzo, A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surv. Tutor. 20(3), 2294–2323 (2018)

    Article  Google Scholar 

  12. M.T.P. Le, G.C. Ferrante, G. Caso, L. De Nardis, M.G. Di Benedetto, On information-theoretic limits of code domain NOMA for 5G. IET Commun. 12(15), 1864–1871 (2018)

    Article  Google Scholar 

  13. Z. Wu, K. Lu, C. Jiang, X. Shao, Comprehensive study and comparison on 5G NOMA schemes. IEEE Access 6, 18511–18519 (2018)

    Article  Google Scholar 

  14. M. Moltafet, N.M. Yamchi, M.R. Javan, P. Azmi, Comparison study between PD-NOMA and SCMA. IEEE Trans. Veh. Technol. 67(2), 1830–1834 (2018)

    Article  Google Scholar 

  15. H. Nikopour, H. Baligh, Sparse code multiple access, in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC (2013), pp. 332–336

    Google Scholar 

  16. R. Hoshyar, F.P. Wathan, R. Tafazolli, Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Trans. Signal Process. 56(4), 1616–1626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, K. Niu, Pattern division multiple access-a novel nonorthogonal multiple access for fifth-generation radio networks. IEEE Trans. Veh. Technol. 66(4), 3185–3196 (2017)

    Article  Google Scholar 

  18. M. Aldababsa, M. Toka, S. Gökçeli, G.K. Kurt, O. Kucur, A tutorial on nonorthogonal multiple access for 5G and beyond. Wirel. Commun. Mob. Comput. 2018 (2018)

    Google Scholar 

  19. Z. Ding, X. Lei, G.K. Karagiannidis, R. Schober, J. Yuan, V.K. Bhargava, A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J. Sel. Areas Commun. 35(10), 2181–2195 (2017)

    Article  Google Scholar 

  20. M. Vaezi, G. Amarasuriya, Y. Liu, A. Arafa, F. Fang, Z. Ding, Interplay between NOMA and other emerging technologies: a survey. 7731(c), 1–20 (2019)

    Google Scholar 

  21. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

    Google Scholar 

  22. Y. Tao, L. Liu, S. Liu, Z. Zhang, A survey: several technologies of non-orthogonal transmission for 5G. China Commun. 12(10), 1–15 (2015)

    Article  Google Scholar 

  23. M. Baghani, S. Parsaeefard, M. Derakhshani, W. Saad, Dynamic non-orthogonal multiple access and orthogonal multiple access in 5G wireless networks. IEEE Trans. Commun. 67(9), 6360–6373 (2019)

    Article  Google Scholar 

  24. Y. Cai, Z. Qin, F. Cui, G.Y. Li, J.A. McCann, Modulation and multiple access for 5G networks. IEEE Commun. Surv. Tutor. 20(1), 629–646 (2018)

    Article  Google Scholar 

  25. K. Saito, A. Benjebbour, Y. Kishiyama, Y. Okumura, T. Nakamura, Performance and design of SIC receiver for downlink NOMA with open-loop SU-MIMO, in 2015 IEEE International Conference on Communications Workshops, ICCW 2015 (2015), pp. 1161–1165

    Google Scholar 

  26. Y. Liu, H. Xing, C. Pan, A. Nallanathan, M. Elkashlan, L. Hanzo, Multiple-antenna-assisted non-orthogonal multiple access. IEEE Wirel. Commun. 25(2), 17–23 (2018)

    Article  Google Scholar 

  27. T.M. Cover, Broadcast channels. IEEE Trans. Inf. Theory 18(1), 2–14 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, M. Haenggi, Superposition coding strategies: design and experimental evaluation. IEEE Trans. Wirel. Commun. 11(7), 2628–2639 (2012)

    Article  Google Scholar 

  29. K. Higuchi, A. Benjebbour, S. Member, Non-orthogonal multiple access (NOMA) with successive. IEICE Trans. Commun. E98-B(3), 403–414 (2015)

    Google Scholar 

  30. Y. Gao, B. Xia, K. Xiao, Z. Chen, X. Li, S. Zhang, Theoretical analysis of the dynamic decode ordering SIC receiver for uplink NOMA systems. IEEE Commun. Lett. 21(10), 2246–2249 (2017)

    Article  Google Scholar 

  31. I.A. Mahady, E. Bedeer, S. Ikki, H. Yanikomeroglu, Sum-rate maximization of NOMA systems under imperfect successive interference cancellation. IEEE Commun. Lett. 23(3), 474–477 (2019)

    Article  Google Scholar 

  32. B. Xia, J. Wang, K. Xiao, Y. Gao, Y. Yao, S. Ma, Outage performance analysis for the advanced SIC receiver in wireless NOMA systems. IEEE Trans. Veh. Technol. 67(7), 6711–6715 (2018)

    Article  Google Scholar 

  33. H.D. Tuan, A.A. Nasir, H.H. Nguyen, T.Q. Duong, H.V. Poor, Non-orthogonal multiple access with improper gaussian signaling. IEEE J. Sel. Top. Signal Process. 13(3), 496–507 (2019)

    Article  Google Scholar 

  34. B. Ling, C. Dong, J. Dai, J. Lin, Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wirel. Commun. Lett. 6(4), 498–501 (2017)

    Article  Google Scholar 

  35. L.P. Qian, A. Feng, Y. Huang, Y. Wu, B. Ji, Z. Shi, Optimal SIC ordering and computation resource allocation in MEC-aware NOMA NB-IoT networks. IEEE Internet Things J. 6(2), 2806–2816 (2019)

    Article  Google Scholar 

  36. S. Chen, K. Peng, H. Jin, J. Song, Analysis of outage capacity of NOMA: SIC vs. JD. Tsinghua Sci. Technol. 21(5), 538–543 (2016)

    Article  Google Scholar 

  37. A. Benjebbour, Y. Kishiyama, Combination of NOMA and MIMO: concept and experimental trials, in 2018 25th International Conference on Telecommunications (ICT 2018) (2018), pp. 433–438

    Google Scholar 

  38. Y. Liu, G. Pan, H. Zhang, M. Song, On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access 4, 2123–2129 (2016)

    Article  Google Scholar 

  39. Q. Sun, S. Han, I. Chin-Lin, Z. Pan, On the ergodic capacity of MIMO NOMA systems. IEEE Wirel. Commun. Lett. 4(4), 405–408 (2015)

    Article  Google Scholar 

  40. Z. Ding, L. Dai, H.V. Poor, MIMO-NOMA design for small packet transmission in the internet of things. IEEE Access 4, 1393–1405 (2016)

    Article  Google Scholar 

  41. Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 15(1), 537–552 (2016)

    Article  Google Scholar 

  42. J. Cui, Z. Ding, P. Fan, Outage probability constrained MIMO-NOMA designs under imperfect CSI. IEEE Trans. Wirel. Commun. 17(12), 8239–8255 (2018)

    Article  Google Scholar 

  43. S. Park, A.Q. Truong, T.H. Nguyen, Power control for sum spectral efficiency optimization in MIMO-NOMA systems with linear beamforming. IEEE Access 7, 10593–10605 (2019)

    Article  Google Scholar 

  44. Y. Chi, L. Liu, G. Song, C. Yuen, Y.L. Guan, Y. Li, Practical MIMO-NOMA: low complexity and capacity-approaching solution. IEEE Trans. Wirel. Commun. 17(9), 6251–6264 (2018)

    Article  Google Scholar 

  45. M. Tian, Q. Zhang, S. Zhao, Q. Li, J. Qin, Secrecy sum rate optimization for downlink MIMO nonorthogonal multiple access systems. IEEE Signal Process. Lett. 24(8), 1113–1117 (2017)

    Article  Google Scholar 

  46. S. Chinnadurai et al., User clustering and robust beamforming design in multicell MIMO-NOMA system for 5G communications. AEU Int. J. Electron. Commun. 78, 181–191 (2017)

    Article  Google Scholar 

  47. K. Senel, H.V. Cheng, E. Björnson, E.G. Larsson, What role can NOMA play in massive MIMO? IEEE J. Sel. Top. Signal Process. 13(3), 597–611 (2019)

    Article  Google Scholar 

  48. A.S. De Sena et al., Massive MIMO-NOMA networks with imperfect SIC: design and fairness enhancement. IEEE Trans. Wirel. Commun. 19(9), 6100–6115 (2020)

    Article  Google Scholar 

  49. W.A. Al-Hussaibi, F.H. Ali, Efficient user clustering, receive antenna selection, and power allocation algorithms for massive MIMO-NOMA systems. IEEE Access 7, 31865–31882 (2019)

    Article  Google Scholar 

  50. Z. Ding, H.V. Poor, Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Process. Lett. 23(5), 629–633 (2016)

    Article  Google Scholar 

  51. D. Kudathanthirige, G.A.A. Baduge, NOMA-aided multicell downlink massive MIMO. IEEE J. Sel. Top. Signal Process. 13(3), 612–627 (2019)

    Article  Google Scholar 

  52. T. Wang, L. Shi, K. Cai, L. Tian, S. Zhang, Non-coherent NOMA with massive MIMO. IEEE Wirel. Commun. Lett. 9(2), 134–138 (2020)

    Article  Google Scholar 

  53. M. Bashar, K. Cumanan, A.G. Burr, H.Q. Ngo, L. Hanzo, P. Xiao, On the performance of cell-free massive MIMO relying on adaptive NOMA/OMA mode-switching. IEEE Trans. Commun. 68(2), 792–810 (2020)

    Article  Google Scholar 

  54. E.P. Simon, J. Farah, P. Laly, Performance evaluation of massive MIMO with beamforming and nonorthogonal multiple access based on practical channel measurements. IEEE Antennas Wirel. Propag. Lett. 18(6), 1263–1267 (2019)

    Article  Google Scholar 

  55. X. Chen, F.K. Gong, G. Li, H. Zhang, P. Song, User pairing and pair scheduling in massive MIMO-NOMA systems. IEEE Commun. Lett. 22(4), 788–791 (2018)

    Article  Google Scholar 

  56. Y. Li, G.A.A. Baduge, Underlay spectrum-sharing massive MIMO NOMA. IEEE Commun. Lett. 23(1), 116–119 (2019)

    Article  Google Scholar 

  57. H. Tabassum, M.S. Ali, E. Hossain, M.J. Hossain, D.I. Kim, Non-orthogonal multiple access (NOMA) in cellular uplink and downlink: challenges and enabling techniques (2016), pp. 1–8

    Google Scholar 

  58. H. Tabassum, M.S. Ali, E. Hossain, M.J. Hossain, D.I. Kim, Uplink Vs. downlink NOMA in cellular networks: challenges and research directions, in IEEE Vehicular Technology Conference, vol. 2017, June (2017)

    Google Scholar 

  59. Z. Yang, W. Xu, C. Pan, Y. Pan, M. Chen, On the optimality of power allocation for NOMA downlinks with individual QoS constraints. IEEE Commun. Lett. 21(7), 1649–1652 (2017)

    Article  Google Scholar 

  60. F. Alavi, K. Cumanan, Z. Ding, A.G. Burr, Beamforming techniques for nonorthogonal multiple access in 5G cellular networks. IEEE Trans. Veh. Technol. 67(10), 9474–9487 (2018)

    Article  Google Scholar 

  61. M.S. Ali, E. Hossain, A. Al-Dweik, D.I. Kim, Downlink power allocation for CoMP-NOMA in multi-cell networks. IEEE Trans. Commun. 66(9), 3982–3998 (2018)

    Article  Google Scholar 

  62. M.S. Ali, E. Hossain, D.I. Kim, Non-orthogonal multiple access (NOMA) for downlink multiuser MIMO systems: user clustering, beamforming, and power allocation. IEEE Access 5, 565–577 (2017)

    Article  Google Scholar 

  63. Y. Hayashi, Y. Kishiyama, K. Higuchi, Investigations on power allocation among beams in nonorthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink, in IEEE Vehicular Technology Conference (2013)

    Google Scholar 

  64. Z. Yang, Z. Ding, P. Fan, N. Al-Dhahir, A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wirel. Commun. 15(11), 7244–7257 (2016)

    Article  Google Scholar 

  65. J.M. Kang, I.M. Kim, Optimal user grouping for downlink NOMA. IEEE Wirel. Commun. Lett. 7(5), 724–727 (2018)

    Article  Google Scholar 

  66. Y. Endo, Y. Kishiyama, K. Higuchi, Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference, in Proceedings International Symposium on Wireless Communication Systems (2012, pp. 261–265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najuk Parekh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parekh, N., Joshi, R. (2022). Non Orthogonal Multiple Access Techniques for Next Generation Wireless Networks: A Review. In: Thakkar, F., Saha, G., Shahnaz, C., Hu, YC. (eds) Proceedings of the International e-Conference on Intelligent Systems and Signal Processing. Advances in Intelligent Systems and Computing, vol 1370. Springer, Singapore. https://doi.org/10.1007/978-981-16-2123-9_13

Download citation

Publish with us

Policies and ethics