Skip to main content

A Study on Tensile and Tear Properties for Chitosan Blended with and Without Natural Fiber Films

  • Conference paper
  • First Online:
Recent Trends in Mechanical Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

A composite film was prepared by blending chitosan and natural fibers with a different formulation. The results of the incorporation of natural fibers with chitosan on the strength of film blends were investigated. The tensile strength is important to identify and analyse sample for suitable application. Overall, it was found difficult to establish higher chitosan compositions that cause resistance to flow due to the higher viscosity of the more rigid chitosan chain.. The ATR-IR test was carried out to determine the presence of a functional group of chitosan blended films. It was noticed that the composite film has a functional group; they interact as a composite blend. The functional group of exhibited amines, amides and esters is ideal for oxidation processes. The tensile test, conducted on Chitosan, sisal fiber-reinforced Chitosan, banana fiber reinforced Chitosan, and coconut fiber reinforced Chitosan specimens were considered. Tests were conducted utilizing UTM. The mechanical property of specimens was studied according to the three parameters which are tensile strength, elongation at break and Engineering UTS. Tear testing has been a concern in this research work. The experimental tear tests showed different results for both chitosan blended with and without natural fibers materials when they were subjected to load in different material directions. The tear test approach deals with assessing the tear resistance of flexible plastic film and sheeting at very low loading levels. The results and analyses for both tensile and tear tests are dependent on compounding chitosan with and without added natural fibers as reinforcement like sisal, banana and coconut fiber. Higher strength was found with higher chitosan composition of natural fibers. The film based on chitosan can potentially be used for biodegradation, antimicrobial packaging and can also be efficient in food preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. K.P. Prashanth, H.G. Hanumantharaju, G.N. Lokesh, Synthesis and characterization study of chitosan based natural fiber: biodegradable polymer composite, in AIP Conference Proceedings 2057 (2019)

    Google Scholar 

  2. K.P. Prashanth, Dr. H.G. Hanumantharaju, Characterization and analysis of polymers used as artificial skin. Mater. Today: Proc. 5(1), 2488–2495 (2018)

    Google Scholar 

  3. K.P. Prashanth, Dr. H.G. Hanumantharaju, Preparation and characterization studyof biodegradable polymer composite. JETIR 5(9) (2018). ISSN-2349–5162

    Google Scholar 

  4. P.K. Dutta, J. Datta Chitin, Chitosan: Chemistry, properties and application, Department of Chemistry, NIT, Allahabad, January 2004

    Google Scholar 

  5. K.P. Prashanth, Dr. H.G. Hanumantharaju, Dr. J. Aravinda, Development and characterization study of Chitosan-Sisal fiber thin films. Int. J. Res. Anal. Rev. (IJRAR) 5(3) (2018). E-ISSN 2348–1269, P- ISSN 2349–5138

    Google Scholar 

  6. Dr. H.G. Hanumantharaju, K.P. Prashanth, Mechanical and structural investigation of Chitosan as biodegradable polymer. Int. J. Eng. Sci. Res. (IJESR), Special Issue, Article no 26 (2019). ISSN 2277–2685,

    Google Scholar 

  7. K.P. Prashanth, H.G. Hanumantharaju, R. Bakshi, Bio-Materials Science and Engineering (LAMBERT Academic Publishing, Chap.1, pp. 07–25, March 2020)

    Google Scholar 

  8. H.G. Hanumantharaju, H.K. Shivanand, K.P. Prashanth, K. Suresh Kumar, S.P. Jagadish, Study on hydroxyapatite coating on biomaterials by plasma spray method. Int. J. Eng. Sci. Technol. 4(9) (2012), ISSN 4152–4159

    Google Scholar 

  9. K.N. Sandeep, R. Shadakshari, K.P. Prashanth, Mechanical and barrier properties of biodegradable films made from Chitosan and natural fiber blends. Int. J. Sci. Res. Rev. 7, (5) (2019). ISSN: 2279–0543

    Google Scholar 

  10. Y.-W. Cheng, D.T. Read, J.D. McColskey, J.E. Wright, A tensile-testing technique for micrometer-sized free-standing thin films. Thin Solid Films 484, 426–432 (2005)

    Google Scholar 

  11. P.N. Sudha, A. Soundararajan, Bio-na nocomposites of Chitosan for Multitissue Engineering Applications, 10.1201/b15636-28, 8 October 2007

    Google Scholar 

  12. K.P. Prashanth, H.G. Dr. Hanumantharaju, Preparation and characterization study of Chitosan-Banana fiber polymer composite for packaging and tissue designing. Manuf. Technol. Today (MTT), (ISSN: 0972–7396), 17(09) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Prashanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prashanth, K.P., Sanman, S., Lokesh, G.N. (2021). A Study on Tensile and Tear Properties for Chitosan Blended with and Without Natural Fiber Films. In: Ramesh, C.S., Ghosh, P., Natarajan, E. (eds) Recent Trends in Mechanical Engineering . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-2086-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2086-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2085-0

  • Online ISBN: 978-981-16-2086-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics