Skip to main content

Genotoxicity and DNA Damage Induced by Herbicides and Toxins in Plants

  • Chapter
  • First Online:
Induced Genotoxicity and Oxidative Stress in Plants

Abstract

Genetic toxicology is a multidisciplinary field of research that explores the detection of harmful and defensive DNA compounds, the understanding of DNA disruption’s biological effects, and its molecular modes of action that lead to the modification and repair of genetic material. The damage to the genetic material is caused by the genotoxic substance’s interaction with the structure and sequence of deoxyribonucleic acid of plants. These genotoxic substances function at a specific position or base sequence of the structure of DNA, causing disruption, fracturing, fusion, deletion, mis-segregation or non-disjunction, resulting damage, and mutation. Many herbicides use inactivation “target proteins” (usually enzymes) that are necessary for important functions such as chemicals or other plant-specific pathways of synthesis. Since crops usually use competing weeds to share these cycles, most herbicides are non-selective. Others are used mostly by collection of resistant species, primarily due to a differential absorption or metabolism of the herbicides or to a certain position. Another provides protection against herbicides of wide-spectrum. This could encourage the use and choice of these different compounds to be environmentally responsible and non-toxic. A plant can reduce the translocation of herbicides on several pathways. In modern years, plants were genetically engineered to fight the lethal effects of herbicides. The resistance of the natural herbicides in plants is responsible for different forms, the target site insensitivity, and the toxic herbicide degradation of the toxic by-products are noteworthy. Both these pathways have been simulated in genetically engineered plants either by excessive expression of the target enzymes or by developing foreign defence products that could easily detoxify the herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ateeq B, Farah MA, Ali MN, Ahmad W (2002) Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor. Mutat Res 518:135–144

    Google Scholar 

  • Airapetyan RB, Avakyan VA, Azatyan RA (1984) Cytological activity of the herbicides 2,4-D, dalapon and semeron on chromosomes of A. cepa L. Biologicheskii Zhurnal Armenii 37:404–408

    CAS  Google Scholar 

  • Amrhein N, Deus B, Gehrke P, Steinrucken HC (1980) The site of the inhibition of the shikimate pathway by Glyphosate.2. Interference of glyphosate with Chorismate formation in vivo and in vitro. Plant Physiol 66:830–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar MP, Juraimi AS, Mohamed MT, Uddin MK, Samedani B, Puteh A, Man A (2013) Integration of agronomic practices with herbicides for sustainable weed management in aerobic rice. Sci World J 2013:916408. https://doi.org/10.1155/2013/916408

    Article  CAS  Google Scholar 

  • Aono M, Kubo A, Saji H, Tanaka K, Kondo N (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione-reductase activity. Plant Cell Physiol 34:129–135

    CAS  Google Scholar 

  • Ashour SA, Abdou RF (1990) The action of igran, topogard and eptam herbicides on germination, seedling growth and mitotic behaviour of faba bean (Vicia faba L.). Fabis Newsletter 26:10–14

    Google Scholar 

  • Badr A (1983) Mitodepressive and chromotoxic activities of two herbicides in Allium cepa. Cytologia 48:451–457

    Article  CAS  Google Scholar 

  • Badr A (1986) Effect of the S-triazine herbicide terbutryn on mitosis chromosomes and nucleic acids in root tips of V. faba. Cytologia 51:571–578

    Article  CAS  Google Scholar 

  • Balbuena MS, Tison L, Hahn M, Greggers U, Menzel R, Farina WM (2015) Effects of sublethal doses of glyphosate on honeybee navigation. J Exp Biol 218:2799–2805. https://doi.org/10.1242/jeb.117291

    Article  PubMed  Google Scholar 

  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M et al (1992) Inhibition of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular recognition of amino acids in plants. American Society of Plant Physiologists, Rockville, MD, pp 139–145

    Google Scholar 

  • Boerth DW, Eder E, Stanks JR, Wanek P, Wacker M, Gaulitz S, Skypeck D, Pandolfo D, Yashin MJ (2005) DNA adduct formation as biomarkers for oxidative stress and DNA damage in crop plants treated with pesticides Agric Food Chem, submitted

    Google Scholar 

  • Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 543:251–272

    Article  CAS  PubMed  Google Scholar 

  • Botterman J, Leemans J (1988) Engineering of herbicide resistance in plants. Biotechnol Genet Eng Rev 6(1):321–340. https://doi.org/10.1080/02648725.1988.10647851

    Article  CAS  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aro a gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744

    Article  CAS  Google Scholar 

  • Comai L, Sen LC, Stalker DM (1983) An altered aroA gene-product confers resistance to the herbicide glyphosate. Science 221:370–371

    Article  CAS  PubMed  Google Scholar 

  • Crosby DG (1982) Pesticides as environmental mutagens. In: Fleck RA, Hollander A (eds) Genetic toxicology: an agricultural perspective. Plenum Press, New York, pp 201–218

    Chapter  Google Scholar 

  • Das TK (2008) Weed science: basics and applications, 1st edn. Jain Brothers Publishers, New Delhi, p 901

    Google Scholar 

  • De Flora S, Izzotti A (2007) Mutagenesis and cardiovascular diseases molecular mechanisms, risk factors, and protective factors. Mutat Res 621(1–2):5–17

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Duke OS (1995) Herbicide resistant field crops. Adv Agron 54:69–116

    Article  CAS  Google Scholar 

  • Denny KM, Sheley RL (2006) Community response of non-target species to herbicide application and removal of the nonindigenous invader. Western North Am Natural 66(1):55–63

    Article  Google Scholar 

  • Devine MD, Duke SO, Fedtke C (1993) Physiology of herbicide action. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Dhingra A, Daniell H (2004) Engineering herbicide resistance pathways in plastids. In: Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp 491–511

    Chapter  Google Scholar 

  • Dodge AD (1990) The mode of action and metabolism of herbicides. In: Hence RJ, Holly K (eds) Weed control handbook: principles, 8th edn. British Crop Protection Council, Blackwell Scientific Publications, Oxford, UK, p 582

    Google Scholar 

  • Dodge AD (1991) Photosynthesis. In: Kirkwood RC (ed) Target sites for herbicide action. Plenum Press, New York, pp 1–28

    Google Scholar 

  • Doležel J, Lucretti S, Novák FJ (1987) The influence of 2,4-dichlorophenoxyacetic acid on cell cycle Kinetics and Sister-Chromatid Exchange Frequency in Garlic (Allium sativum L.) Meristem Cells Biol Plant 29:253

    Google Scholar 

  • Dryanovska OA, Petkov ST (1980) Cytogenetic after-effect of herbicides igran and sencorer on Pisum sativum L. Dokl Bolg Akad Nauk 33:1549–1552

    CAS  Google Scholar 

  • Duke SO (1988) Glyphosate. In: Kearney PC, Kaufman DD (eds) Herbicides - chemistry, degradation and mode of action, vol III. Marcel Dekker, New York, pp 1–70

    Google Scholar 

  • Dvorak J (1968) Endopolyploidy in the roots of rye. Secale cereale L. Biol Plant 10:112

    Article  Google Scholar 

  • Enan MR (2009) Genotoxicity of the herbicide 2, 4-dichlorophenoxyacetic acid (2, 4-D): higher plants as monitoring systems. Am Eurasian J Sustainable Agric 3(3):452–459

    Google Scholar 

  • Filkowski J, Besplug J, Burke P, Kovalchuk I, Kovalchuk O (2003) Genotoxicity of 2,4-D and dicamba revealed by transgenic Arabidopsis thaliana plants harboring recombination and point mutation markers. Mutat Res 542:23–32

    Article  CAS  PubMed  Google Scholar 

  • Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary agrobacterium tumefaciens vector. Biotechnology 5:726–730

    CAS  Google Scholar 

  • Fiskesjo G, Lassen C, Renberg L (1981) Chlorinated phenoxyacetic acids and chlorophenols in the modified Allium test. Chem Biol Interact 34:333–344

    Article  CAS  PubMed  Google Scholar 

  • Freyssinet G (2003) Herbicide-resistant transgenic crops - a benefit for agriculture. Phytoparasitica 31:105–108

    Article  Google Scholar 

  • Freyssinet G, Leroux B, Lebrun M, Pelissier B, Sailland A, Pallett KE. (1989) Transfer of bro-moxynil resistance into crops. Paper presented at the Brighton crop protection conference, Farnham (PDF) herbicides: history, Classification and Genetic Manipulation of Plants for Herbicide Resistance

    Google Scholar 

  • Geras’kin SA, Kim JK, Dikarev VG, Oudalova AA, Dikareva NS, Spirin YV (2006) Cytogenetic effect of radioactive or chemical contamination on spring barley intercalary meristem cells. In: Arapis G et al (eds) Ecotoxicology, ecological risk assessment and multiple stressors. Springer, Dordrecht, pp 243–254

    Chapter  Google Scholar 

  • Gichner T, Plewa MJ (1998) Induction of somatic DNA damage as measured by single cell gel electrophoresis and point mutation in leaves of tobacco plants. Mutat Res 401:143–152

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Ptacek O, Stavreva DA, Plewa MJ (1999) Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. Environ Mol Mutagen 33:279–286

    Article  CAS  PubMed  Google Scholar 

  • Golden SS, Haselkorn R (1985) Mutation to herbicide resistance maps within the psbA gene of Anacystis nidulans R2. Science 229:1104–1107

    Article  CAS  PubMed  Google Scholar 

  • Grant WF (1978) Chromosome aberrations in plants as a biomonitoring system. Environ Health Prespect 27:37–43

    Article  CAS  Google Scholar 

  • Grant WF, Owens ET (2001) Chromosome aberration assays in Pisum for the study of environmental mutagens. Mut Res 488:93–118

    Google Scholar 

  • Gupta AS, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants from oxidative stress (Induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiol 103:1067–1073

    Google Scholar 

  • Hakeem H, Shehab A (1972) Cytological effects of simazine on Vicia faba. Proc Egypt Acad Sci 25:61–66

    Google Scholar 

  • Haliem AS (1990) Cytological effects of the herbicide sencorer on mitosis of Allium cepa. Egypt J Bot 33:93–104

    CAS  Google Scholar 

  • Hartzler B (2017) Evaluating herbicide injury on soybean. Integrated Pest Management. Iowa State University. http://crops.extension.iastate.edu

  • He M, Yang ZY, Nie YF, Wang J, Xu PL (2001) A new type of class I bacterial 5-enopyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. BBA-Gen Subjects 1568:1–6

    Article  CAS  Google Scholar 

  • Hoagland RE, Duke SO, Elmore D (1978) Effects of glyphosate on metabolism of phenolic compounds. 2. Influence on soluble hydroxyphenolic compound, free amino-acid and soluble protein levels in dark-grown maize roots. Plant Sci Lett 13:291–299

    Article  CAS  Google Scholar 

  • ISB (2004) Information systems for biotechnology. http://www.isb.vt.edu

  • Khalatkar AS, Bhargava YR (1982) 2,4-Dichlorophenoxyacetic acid– a new environmental mutagen. Mutat Res 103:111–114

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Ansari MY, Gupta H, Chaudhary S (2009) Dynamics of 2,4-D in generation of cytomorphological variants in an important anticancerous and antihepatotoxic herb – Cichorium intybus L. Turk J Bot 33:383–387

    Google Scholar 

  • Konishi T, Sasaki Y (1994) Compartmentalization of 2 forms of acetyl-coa carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci U S A 91:3598–3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Singh AK (2010) A review on herbicide 2,4-D damage reports in wheat (Triticum aestivum L.). J Chem Pharm Res 2(6):118–124

    CAS  Google Scholar 

  • Kumari TS, Vaidyanath K (1989) Testing of genotoxic effects of 2,4 dichlorophenoxyacetic acid (2,4-D) using multiple genetic assay systems of plants. Mutat Res 226:235–238

    Article  CAS  PubMed  Google Scholar 

  • Lebrun M, Sailland A, Freyssinet G, Degryse E (1997) Mutated EPSPS, gene coding for said protein and transformed plants containing said gene (pp. WO 97/04103)

    Google Scholar 

  • Liang GH, Feltner KC, Liang YYS, Morril JM (1967) Cytogenetic effects and responses of agronomic characters on grain sorghum following atrazine application. Crop Sci 7(3):245–248

    Article  CAS  Google Scholar 

  • Liang GHL, Liang YTS (1972) Effect of atrazine on chromosomal behaviour in Sorghum sp. Can J Genet Cytol 14:423–427

    Article  CAS  Google Scholar 

  • Mannerlof M, Tuvesson S, Steen P, Tenning P (1997) Transgenic sugar beet tolerant to glyphosate. Euphytica 94:83–91

    Article  CAS  Google Scholar 

  • Masojídek J, Koblizek M, Torzillo G (2013) Photosynthesis in microalgae. In: Handbook of microalgal culture: biotechnology and applied phycology. Wiley, Hoboken, NJ, pp 20–39. https://doi.org/10.1002/9781118567166.ch2

    Chapter  Google Scholar 

  • McCloskey WB, Holt JS (1990) Triazine resistance in Senecio vulgaris parental and nearly isonuclear backcrossed biotypes is correlated with reduced productivity. Plant Physiol 92:954–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohandas T, Grant WF (1972) Cytogenetic effects of 2, 4-D and amitrole in relation to nuclear volume and DNA content in some higher plants. Can J Genet Cytol 14:773–783

    Google Scholar 

  • Mousa M (1982) Mitotic inhibition and chromosomal aberrations induced by some herbicides in root tips of A. cepa. Egypt J Genet Cytol 11:193–207

    Google Scholar 

  • Mousdale DM, Coggins JR (1985) Subcellular localization of the common shikimate pathway enzymes in Pisum sativum L. Planta 163:241–249

    Article  CAS  PubMed  Google Scholar 

  • Murata M (1989) Effects of auxin and cytokinin on induction of sister chromatid exchange in cultured cells of wheat (Triticum aestivum L.). Theor Appl Genet 78:521–524

    Article  CAS  PubMed  Google Scholar 

  • Nida DL, Kolacz KH, Buehler RE, Deaton WR, Schuler WR, Armstrong TA et al (1996) Glyphosate-tolerant cotton: genetic characterization and protein expression. J Agric Food Chem 44:1960–1966

    Article  CAS  Google Scholar 

  • Nikolskaya T, Zagnitko O, Tevzadze G, Haselkorn R, Gornicki P (1999) Herbicide sensitivity determinant of wheat plastid acetyl-CoA carboxylase is located in a 400-amino acid fragment of the carboxyltransferase domain. Proc Natl Acad Sci U S A 96:14647–14651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohi R, Zanic M (2016) Ahead of the curve: new insights into microtubule dynamics. F1000Research 5:F1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, La Vallee BJ, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification and characterization of a glyphosate tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  • Padgette SR, Re DB, Barry GF, Eichholtz DE, Delanny X, Fuchs RL et al (1996) New weed control opportunities: development of soybeans with a roundup ready gene. In: Duke SO (ed) Herbicide-resistant crops: agricultural, environmental, economic, regulatory and technical aspects. CRC Press, Boca Raton, FL, pp 53–84

    Google Scholar 

  • Papes D, Besendorfor V, Bosilgevac V (1989) The Allium test response to cyanazine. Acta Bot Croat 48:39–46

    Google Scholar 

  • Pavlica M, Papes D, Nagy B (1991) 2, 4-Dichlorophenoxyacetic acid causes chromatin and chromosome abnormalities in plant cells and mutation in cultured mammalian cells. Mutat Res 263:77–81

    Article  CAS  PubMed  Google Scholar 

  • Phillips DH, Arlt VM (2009) Genotoxicity: damage to DNA and its consequences. EXS 99:87–110. https://doi.org/10.1007/978-3-7643-8336-7_4

    Article  CAS  PubMed  Google Scholar 

  • Pipke R, Amrhein N, Jacob GS, Schaefer J, Kishore GM (1987) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur J Biochem 165(2):267–273

    Article  CAS  PubMed  Google Scholar 

  • Plewa MJ (1978) Activation of chemical into mutagen by green plants: a preliminary discussion. Environ Health Perspect 27:45–50

    Google Scholar 

  • Pokorny ML, Sheley RL, Svejcar TJ, Engel RE (2004) Plant species diversity in a grassland plant community: evidence for forbs as a critical management consideration. West North Am Naturalist 64(2):219–230

    Google Scholar 

  • Preston C (1994) Resistance to photosystem I disrupting herbicides. In: Powles SB, Holtum JAM (eds) Herbicide resistance in plants: biology and biochemistry. Lewis Publishers, Boca Raton, FL, pp 61–82

    Google Scholar 

  • Preston C (2014) Plant biotic stress: weeds. In: Encyclopaedia of agriculture and food systems. Elsevier, Amsterdam, pp 343–348

    Chapter  Google Scholar 

  • Radosevich S, Holt J, Ghersa C (1997) Weed ecology. Willey, New York, p 589

    Google Scholar 

  • Saroha MK, Sridhar P, Malik VS (1998) Glyphosate-tolerant crops: genes and enzymes. J Plant Biochem Biotechnol 7:65–72

    Article  CAS  Google Scholar 

  • Schulz A, Wengenmayer F, Goodman HM (1990) Genetic engineering of herbicide resistance in higher plants. Critical Rev in Plant Sci 9:1–15

    Article  CAS  Google Scholar 

  • Shaaltiel YA, Glazer P, Biocion P, Gressel J (1988) Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulfurdiozide and ozone. Pestic Biochem Physiol 31:13–23

    Article  CAS  Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Tumer NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in transgenic plants. Science 233(4762):478–481. https://doi.org/10.1126/science.233.4762.478

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Devine MD (2000) Mechanisms of selectivity and resistance to triazine herbicides. In: LeBaron HM, Gianessi LP, McFarland J (eds) The Triazine herbicides. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Sikorski JA, Gruys KJ (1997) Understanding glyphosate’s molecular mode of action with EPSP synthase: evidence favoring an allosteric inhibitor model. Acc Chem Res 30:2–8

    Article  CAS  Google Scholar 

  • Spadotto CA (2004) Enviroment monitoring of the agrochemicals risk: principles and recommendations, 1st edn. Embrapa Environment, Jaguariuna, p 29

    Google Scholar 

  • Spadotto CA (2011) Behaviour and fate of herbicides, Comitê de Meio Ambiente, Sociedade Brasileira da Ciência das Plantas Daninhas [Online], http://www.cnpma.embrapa.br/herbicidas. Accessed 10 Sep 2011)

  • Stalker DM, Malyj LD, McBride KE (1988) Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide-sequence analysis of the bxn gene. J Biol Chem 263:6310–6314

    Article  CAS  PubMed  Google Scholar 

  • Strauch E, Wohlleben W, Puhler A (1988) Cloning of a Phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Streptomyces lividans and Escherichia coli. Gene 63:65–74

    Article  CAS  PubMed  Google Scholar 

  • Stroev VS (1970) Cytogenetic activity of the herbicides atrazine, chloroisopropyl phenylcarbamate and parapquat. Genetika 6:31–37

    CAS  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Templeman WG, Marmoy CJ (1940) The effect upon the growth of plants of watering with solutions of plant-growth substances and of seed dressings containing these materials. Ann App Biol 27:453

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Yuj C, Sasaki YF (2000) Single cell gel/comet assay: guidelines for m vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  • Tomaskova D, Mydlilova E (1986) Studies on the cytogenetic effects of the igran 80 WP and dicuran 80 WP herbicides in bean Vicia faba and wheat Triticum aestivum. SONNB-UVTIZ (U313 Zemed) OCHR-ECD 10:7–28

    Google Scholar 

  • Tyser RW, Asebrook JM, Potter RW, Kurth LL (1998) Roadside revegetation in glacier National Park, USA: effects of herbicide and seeding treatments. Restor Ecol 6(2):197–206

    Article  Google Scholar 

  • Uhl M, Plewa MJ, Majer BJ, Knasmuller S (2003) Basic principles of genetic toxicology with an emphasis on plant bioassays, 11-30. In: Maluszynska J, Plewa M (eds) Bioassays in plant cells for improvement of ecosystem and human health. Wydawnictvo Uniwersytetu Slaskiego, Katowice, p 150

    Google Scholar 

  • Van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Article  Google Scholar 

  • Varshney S, Hayat S, Alyemeni MN, Ahmad A (2012) Effects of herbicide applications in wheat fields: is phytohormones application a remedy? Plant Signal Behav 7(5):570–575. https://doi.org/10.4161/psb.19689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivancos PD, Driscoll SP, Bulman CA, Ying L, Emami K, Treumann A, Mauve C, Noctor G, Foyer CH (2011) Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of Shikimic acid metabolism affect cellular radix homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiol 157(1):256–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner T, Windhovel U, Romer S (2002) Transformation of tobacco with a mutated cyanobacterial phytoene desaturase gene confers resistance to bleaching herbicides. J Biosci 57:671–679

    CAS  Google Scholar 

  • Wang HY, Li YF, Xie LX, Xu PL (2003) Expression of a bacterial aroA mutant, aroA-M1, encoding 5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosate resistant tobacco plants. J Plant Res 116:455–460

    Article  CAS  PubMed  Google Scholar 

  • WSSA (1998). https://wssa.net/wssa/weed/resistance/herbicide-resistance-and-herbicide-tolerance-definitions/. Accessed 24 Nov 2020

  • Wu KD, Grant WF (1966) Morphological and somatic chromosomal aberrations induced by pesticides in barley. Can J Genet Cytol 8:481–501

    Article  Google Scholar 

  • Zeljezic D, Garaj-Vrhovac V (2004) Chromosomal aberrations, micronuclei and nuclear buds induced in human lymphocytes by 2, 4-dichlorophenoxyacetic acid pesticide formulation. Toxicology 200:39

    Article  CAS  PubMed  Google Scholar 

  • Zimdahl RL (2007a) Fundamentals of weed science. Elsevier, Amsterdam

    Google Scholar 

  • Zimdahl RL (2007b) A history of weed science in the United States. Elsevier, Amsterdam

    Google Scholar 

  • Zweig G, Shavit N, Avron M (1965) Diquat (1,1′-Ethylene-2,2'-Dipyridylium dibromide) in photoreactions of isolated chloroplasts. Biochim Biophys Acta 109:332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to take this opportunity to express our gratitude and appreciation for the support of Dr. Zeba Khan, Dr. MohdYunus Khalil Ansari and Dr. Durre Shahwar. Our special thanks to all the editors for their constant support, generosity, encouragement, and suggestions. We appreciate the cooperation that everyone displayed under such strenuous conditions which made the writing simple and easy.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panigrahi, K.K., Mohanty, A., Padhan, S.R., Guru, R.K.S. (2021). Genotoxicity and DNA Damage Induced by Herbicides and Toxins in Plants. In: Khan, Z., Ansari, M.Y.K., Shahwar, D. (eds) Induced Genotoxicity and Oxidative Stress in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-2074-4_2

Download citation

Publish with us

Policies and ethics