Skip to main content

Assessment of the Forest Carbon Balance Due to Deforestation and Plantation Forestry in Southeast Asia

  • Chapter
  • First Online:
Energy Sustainability and Climate Change in ASEAN

Abstract

Assessment of the carbon balance due to changes in forest land uses could serve as an important benchmark for the Reducing Emissions from Deforestation and Forest Degradation (REDD+) scheme of the United Nations Framework Convention on Climate Change. Here, we assessed the carbon gains and loss due to deforestation and plantation forestry in Southeast Asia during the implementation period of the Paris Climate Agreement between 2020 and 2030. Data on forest cover and carbon stocks were obtained from the most recent forest resources assessment report by the Food and Agriculture Organization. We performed a regression analysis to obtain parameters and initial values for predicting the forest cover change, where logging was assumed to take place in both natural and plantation forests. Between 2000 and 2020, Southeast Asia lost about 0.5%, or 1.1 million hectares, every year, whilst plantation forests gained 1.8%. Carbon stocks in natural forests declined to 15.7 petagrams of carbon (PgC) in 2030 from 19.7 PgC in 2000. On average, Southeast Asia emits about 468.6 teragrams of carbon dioxide per year (TgCO2 year−1) due to the loss of natural forests and logging, or about 23% of emissions, from tropical forests. Plantation forests gain about 25.9 TgCO2 year−1 between 2000 and 2030. Between 2020 and 2030, Southeast Asia is likely to emit about 442.7 TgCO2 year−1. If a retrospective approach is used, the forest reference emission level for this region is 424.2 TgCO2 year−1 during the implementation period of the Paris Agreement. Carbon revenues under the REDD+ scheme were estimated at US$2.4 billion annually under the Paris Agreement. Our study suggests that plantation forests could play a role in increasing role wood supply to the region, but caution is needed because large-scale plantations can cause environmental destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Castano J (2001) World timber supply and demand scenario, government interventions, issues and problems. In: Proceedings of the international conference on timber plantation development, 7–9 November 2000, pp. 17–42

    Google Scholar 

  • Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci USA 107:16738–16742. https://doi.org/10.1073/pnas.1004875107

    Article  Google Scholar 

  • Aye YYDK, Lee YDP, Park GE (2011) Carbon storage of 15-year-old Xylia xylocarpa and Pterocarpus macrocarpus plantations in the Katha District of Myanmar. Forest Sci Technol 7:134–140. https://doi.org/10.1080/21580103.2011.594613

    Article  Google Scholar 

  • Brack D (2018) Sustainable consumption and production of forest products. Background study prepared for the thirteenth session of the United Nations Forum on Forests. United Nations Forum on Forests, p 74. https://www.un.org/esa/forests/wp-content/uploads/2018/04/UNFF13_BkgdStudy_ForestsSCP.pdf

  • Chan B (2016) Current status of forest concessions in Southeast Asia. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Chauhan SK, Ritu YS, Chauban R (2016) Carbon sequestration in plantations. In: Panwar P, Gupta SK (eds) Agroforestry for increased production and livelihood security. NIPA, New Delhi, pp 215–34

    Google Scholar 

  • Cossalter C, Pye-Smith C (2003) Fast-wood forestry: myths and realities. CIFOR, Bogor Barat, Indonesia: CIFOR, p 60

    Google Scholar 

  • Cuong T, Chinh TTQ, Zhang Y, Xie Y (2020) Economic performance of forest plantations in Vietnam: Eucalyptus, Acacia mangium, and Manglietia conifera. Forests 11(4). https://doi.org/10.3390/f11030284

  • Dar JA, Sundarapandian S (2015) Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environ Monitor Assess 187. https://doi.org/10.1007/s10661-015-4299-7

  • Edwards DP, Laurance WF (2011) Loophole in forest plan for Indonesia. Nature 47(33). https://doi.org/10.1038/477033a

  • Enters T (2000) Site, technology and productivity of teak plantations in Southeast Asia. Unasylva 201:55–61

    Google Scholar 

  • Estoque RC, Ooba M, Avitabile V, Hijioka Y, DasGupta R, Togawa T, Murayama Y (2019) The future of Southeast Asia’s Forests. Nat Commun 10. https://doi.org/10.1038/s41467-019-09646-4

  • FAO (2018) Terms and definition FRA 2020. FAO, Rome

    Google Scholar 

  • FAO (2020) Global forest resources assessment 2020. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2006) Taking stock: assessing progress in developing and implementing codes of practice for forest harvesting in Asian Member Countries. FAO, Rome

    Google Scholar 

  • Gorte RW, Sheikh PA (2010) CRS report for Congress: deforestation and climate change. Congressional Research Service

    Google Scholar 

  • Imai N, Furukawa T, Tsujino R, Kitamura S, Yumoto T (2018) Factors affecting forest area change in Southeast Asia during 1980–2010. PLoS One 13(5). https://doi.org/10.1371/journal.pone.0197391

  • Jürgensen C, Kollert W, Lebedys A (2014) Assessment of industrial roundwood production from Planted Forests. FAO planted forests and trees working paper FP/48/E. FAO, Rome. https://www.fao.org/forestry/plantedforests/67508@170537/en/

  • Kollert W, Cherubini L (2012) Teak resources and market assessment 2010. Planted forests and trees working paper series. Working Paper FP/47/E. FAO, Rome. https://www.fao.org/3/a-an537e.pdf

  • Mather A (2003) Global forest resources assessment 2000 main report. Land Use Policy 20(195). https://doi.org/10.1016/s0264-8377(03)00003-6

  • Maxwell SL, Evans T, Watson JEM, Morel A, Grantham H, Duncan A, Harris N, Potapov P, Runting RK, Venter O, Wang S, Malhi Y (2019) Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci Adv 5(10). https://doi.org/10.1126/sciadv.aax2546

  • Noraida AW, Abdul-Rahim AS, Mohd-Shahwahid HO (2017) The impact of sustainable forest management (SFM) practices on primary timber-based production in Peninsular Malaysia. J Ekonomi Malaysia 51(2):143–154

    Google Scholar 

  • Nunes LJR, Meireles CIR, Gomes CJP, Ribeiro NMCA (2020) Forest contribution to climate change mitigation: management oriented to carbon capture and storage. Climate 8(2)

    Google Scholar 

  • Paoli GD, Wells PL, Meijaard E, Struebig MJ, Marshall AJ, Obidzinski K, Tan A, Rafiastanto A, Yaap B, Ferry Slik JW, Morel A, Perumal B, Wielaard M, Husson S, D’Arcy L (2010) Biodiversity conservation in the REDD. Carbon Balance Manage 5:1–9. https://doi.org/10.1186/1750-0680-5-7

    Article  Google Scholar 

  • Pearson TRH, Brown S, Murray L, Sidman G (2017) Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manage 12. https://doi.org/10.1186/s13021-017-0072-2

  • Phat NK, Knorr W, Kim S (2004) Appropriate measures for conservation of terrestrial carbon stocks—analysis of trends of forest management in Southeast Asia. For Ecol Manage 191(1–3):283–299. https://doi.org/10.1016/j.foreco.2003.12.019

    Article  Google Scholar 

  • Phillips OL, Brienen RJW, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R et al (2017) Carbon uptake by mature amazon forests has mitigated amazon nations’ carbon emissions. Carbon Balance Manage 12:1–9. https://doi.org/10.1186/s13021-016-0069-2

    Article  Google Scholar 

  • Piponiot C, Cabon A, Descroix L, Dourdain A, Mazzei L, Ouliac B, Rutishauser E, Sist P, Hérault B (2016) A methodological framework to assess the carbon balance of tropical managed forests. Carbon Balance Manage 11. https://doi.org/10.1186/s13021-016-0056-7

  • Piponiot C, Rödig E, Putz FE, Rutishauser E, Sist P, Ascarrunz N, Blanc L, Derroire G, Descroix L, Guedes MC, Coronado EH, Huth A, Kanashiro M, Licona JC, Mazzei L, d’Oliveira MVN, Claros MP, Rodney K, Shenkin A, de Souza CR, Vidal E, West TAP, Wortel V, Herault B (2019a) Can timber provision from amazonian production forests be sustainable? Environ Res Lett 14. https://doi.org/10.1088/1748-9326/ab195e

  • Piponiot C, Rutishauser E, Derroire G, Putz FE, Sist P, West TAP, Descroix L, Guedes MC, Coronado ENH, Kanashiro M, azzei L, d’Oliveira MVN, Claros MP, Rodney K, Ruschel AR, de Souza CR, Vidal E, Wortel V, Herault B (2019b) Optimal strategies for ecosystem services provision in amazonian production forests. Environ Res Lett 14. https://doi.org/10.1088/1748-9326/ab5eb1

  • Roshetko JM, Rohadi D, Perdana A, Sabastian G, Pramono A, Widyani N, Manalu P, Fauzi M, Sumardamto P (2013) Teak systems’ contribution to rural development in Indonesia. In World teak conference

    Google Scholar 

  • Sands R (2013) Forestry in a global context. CABI International, Wallingford

    Book  Google Scholar 

  • Sasaki N, Knorr W, Foster DR, Etoh H, Ninomiya H, Chay S, Kim S, Sun S (2009) Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020. Appl Energy 86:S140–S150. https://doi.org/10.1016/j.apenergy.2009.04.015

    Article  Google Scholar 

  • Sasaki N, Asner GP, Pan Y, Knorr W, Durst PB, Ma HO, Abe I, Lowe AJ, Koh LP, Putz FE (2016a) Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Front Environ Sci 4:1–13. https://doi.org/10.3389/fenvs.2016.00050

    Article  Google Scholar 

  • Sasaki N, Chheng K, Mizoue N, Abe I, Lowe AJ (2016b) Forest reference emission level and carbon sequestration in Cambodia. Global Ecol Conserva 7:82–96. https://doi.org/10.1016/j.gecco.2016.05.004

    Article  Google Scholar 

  • Seymour F, Harris NL (2019) Reducing tropical deforestation. Science 365(6455):756–757. https://doi.org/10.1126/science.aax8546

    Article  Google Scholar 

  • Sharma P, Thapa RB, Matin MA (2020) Examining forest cover change and deforestation drivers in Taunggyi District Shan State, Myanmar . Environ Dev Sustain 22:5521–5538. https://doi.org/10.1007/s10668-019-00436-y

    Article  Google Scholar 

  • Smith C, Spracklen D, Baker J (2020) Impacts of tropical deforestation on local climate. In: EGU general assembly 2020. https://doi.org/10.5194/egusphere-egu2020-11712

  • Sodhi NS, Posa MRC, Lee TM, Bickford D, Koh LP, Brook BW (2010) The state and conservation of Southeast Asian biodiversity. Biodivers Conserv 19:317–328. https://doi.org/10.1007/s10531-009-9607-5

    Article  Google Scholar 

  • Stibig HJ, Achard F, Carboni S, Raši R, Miettinen J (2014) Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11:247–258. https://doi.org/10.5194/bg-11-247-2014

    Article  Google Scholar 

  • Stolle F, Dennis R (2007) Forest cover change in Southeast Asia—the regional pattern. JRC scientific and technical reports. European Commission Joint Research Centre

    Google Scholar 

  • Venkatappa M, Sasaki N, Anantsuksomsri S, Smith B (2020) Applications of the google earth engine and phenology-based threshold classification method for mapping forest cover and carbon stock changes in Siem Reap Province, Cambodia. Remote Sens 12(18):3110. https://doi.org/10.3390/rs12183110

    Article  Google Scholar 

  • World Bank (2020) State and trends of carbon pricing 2020 state and trends of carbon pricing. World Bank, Washington, DC

    Google Scholar 

  • Zeng Z, Estes L, Ziegler AD, Chen A, Searchinger T, Hua F, Guan K, Jintrawet A, Wood EF (2018) Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat Geosci 11:556–562. https://doi.org/10.1038/s41561-018-0166-9

    Article  Google Scholar 

  • Zhou X, Wen Y, Goodale UM, Zuo H, Zhu H, Li X, You Y, Yan L, Su Y, Huang X (2017) Optimal rotation length for carbon sequestration in eucalyptus plantations in subtropical China. New Forest 48:609–627. https://doi.org/10.1007/s11056-017-9588-2

    Article  Google Scholar 

  • Zubizarreta-Gerendiain A, Pukkala T, Peltola H (2016) Effects of wood harvesting and utilisation policies on the carbon balance of forestry under changing climate: a finnish case study. Forest Policy Econ 62:168–176. https://doi.org/10.1016/j.forpol.2015.08.007

    Article  Google Scholar 

Download references

Acknowledgements

This research paper was carried out under funding from the Economic Research Institute for ASEAN and East Asia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nophea Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasaki, N., Myint, Y.Y., Venkatappa, M. (2021). Assessment of the Forest Carbon Balance Due to Deforestation and Plantation Forestry in Southeast Asia. In: Phoumin, H., Taghizadeh-Hesary, F., Kimura, F., Arima, J. (eds) Energy Sustainability and Climate Change in ASEAN. Economics, Law, and Institutions in Asia Pacific. Springer, Singapore. https://doi.org/10.1007/978-981-16-2000-3_4

Download citation

Publish with us

Policies and ethics