Skip to main content

Control Scheme for Active Power Decoupling in PWM Converter with Increased Power Density

  • Conference paper
  • First Online:
Proceedings of Symposium on Power Electronic and Renewable Energy Systems Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 616))

Abstract

Active power decoupling (APD) technique minimizes twice the supply frequency power ripple on DC side. Consequently, the size of DC-link capacitor will be reduced greatly. So instead of using bulky, less reliable electrolytic capacitor, choice of film capacitor is obvious. Furthermore, power density of the converter will also increase. This paper presents a simple control scheme for APD technique in single-phase PWM rectifiers. Presented control scheme generates twice the supply frequency reference current to be taken by boost-type decoupling circuit with the help of phase-locked loop (PLL), digital filter, and simple proportional controller which makes the control system faster and robust. Simulation and processor-in-the-loop (PIL) studies confirm that it provides efficient decoupling performance with power quality consideration such as unity power factor operation and THD of grid-side current within permissible limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Lei, K. Wang, L. Zhao, Q. Ge, Z. Li, Y. Li, An improved torque and current pulsation suppression method for railway traction drives under fluctuating DC-link voltage. IEEE Trans. Power Electron. 33(10), 8565–8577 (2018). https://doi.org/10.1109/TPEL.2017.2777479

    Article  Google Scholar 

  2. O. Garcia, J.A. Cobos, R. Prieto, P. Alou, J. Uceda, Power factor correction: a survey, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230), Vancouver, BC, vol. 1 (2001), pp. 8–13. https://doi.org/10.1109/PESC.2001.953987

  3. F. Musavi, W. Eberle, W.G. Dunford, A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers. IEEE Trans. Ind. Appl. 47(4), 1833–1843 (2011). https://doi.org/10.1109/TIA.2011.2156753

  4. Y. Xue, L. Chang, S.B. Kjaer, J. Bordonau, T. Shimizu, Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Trans. Power Electron. 19(5), 1305–1314 (2004). https://doi.org/10.1109/TPEL.2004.833460

  5. M. Vasiladiotis, A. Rufer, Dynamic analysis and state feedback voltage control of single-phase active rectifiers with DC-link resonant filters. IEEE Trans. Power Electron. 29(10), 5620–5633 (2014). https://doi.org/10.1109/TPEL.2013.2294909

    Article  Google Scholar 

  6. S. Nonaka, Y. Neba, Single-phase PWM current source converter with double-frequency parallel resonance circuit for DC smoothing, in Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Toronto, Ontario, Canada, vol. 2 (1993), pp. 1144–1151. https://doi.org/10.1109/IAS.1993.299041

  7. P. Dahler, G. Knapp, A. Nold, New generation of compact low voltage IGBT converter for traction applications, in 2005 European Conference on Power Electronics and Applications, Dresden (2005), p. 9. https://doi.org/10.1109/EPE.2005.219527

  8. Y. Sun, Y. Liu, M. Su, W. Xiong, J. Yang, Review of active power decoupling topologies in single-phase systems. IEEE Trans. Power Electron. 31(7), 4778–4794 (2016). https://doi.org/10.1109/TPEL.2015.2477882

    Article  Google Scholar 

  9. A.S. Morsy, P.N. Enjeti, Comparison of active power decoupling methods for high-power-density single-phase inverters using wide-bandgap FETs for Google little box challenge. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 790–798 (2016). https://doi.org/10.1109/JESTPE.2016.2573262

    Article  Google Scholar 

  10. K. Chao, P. Cheng, T. Shimizu, New control methods for single phase PWM regenerative rectifier with power decoupling function, in 2009 International Conference on Power Electronics and Drive Systems (PEDS), Taipei (2009), pp. 1091–1096. https://doi.org/10.1109/PEDS.2009.5385686

  11. R. Wang, F. Wang, D. Boroyevich, P. Ning,A high power density single phase PWM rectifier with active ripple energy storage, in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA (2010), pp. 1378–1383. https://doi.org/10.1109/APEC.2010.5433409

  12. Y. Tang, F. Blaabjerg, P.C. Loh, C. Jin, P. Wang, Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit. IEEE Trans. Power Electron. 30(4), 1855–1865 (2015). https://doi.org/10.1109/TPEL.2014.2327134

    Article  Google Scholar 

  13. T. Shimizu, Y. Jin, G. Kimura, DC ripple current reduction on a single-phase PWM voltage-source rectifier. IEEE Trans. Ind. Appl. 36(5), 1419–1429 (2000). https://doi.org/10.1109/28.871292

  14. H. Rezaei, H. Rastegar, M. Pichan, A new active power decoupling method for single phase PWM rectifiers, in 2015 23rd Iranian Conference on Electrical Engineering, Tehran (2015), pp. 1665–1670. https://doi.org/10.1109/IranianCEE.2015.7146486

  15. G.H. Tan, J.Z. Wang, Y.C. Ji, Soft-switching flyback inverter with enhanced power decoupling for photovoltaic applications. IET Electr. Power Appl. 1(2), 264–274 (2007). https://doi.org/10.1049/iet-epa:20060236

    Article  Google Scholar 

  16. M. Su, P. Pan, X. Long, Y. Sun, J. Yang, An active power-decoupling method for single-phase AC–DC converters. IEEE Trans. Ind. Inf. 10(1), 461–468 (2014). https://doi.org/10.1109/TII.2013.2261081

    Article  Google Scholar 

  17. H. Li, K. Zhang, H. Zhao, S. Fan, J. Xiong, Active power decoupling for high-power single-phase PWM rectifiers. IEEE Trans. Power Electron. 28(3), 1308–1319 (2013). https://doi.org/10.1109/TPEL.2012.2208764

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, P., Maurya, R. (2021). Control Scheme for Active Power Decoupling in PWM Converter with Increased Power Density. In: Mohapatro, S., Kimball, J. (eds) Proceedings of Symposium on Power Electronic and Renewable Energy Systems Control. Lecture Notes in Electrical Engineering, vol 616. Springer, Singapore. https://doi.org/10.1007/978-981-16-1978-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1978-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1977-9

  • Online ISBN: 978-981-16-1978-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics