Skip to main content

Modified Switched Z-Source Topology for Inverter Applications

  • Conference paper
  • First Online:
Proceedings of Symposium on Power Electronic and Renewable Energy Systems Control

Abstract

This paper presents modification in the existing switched Z-source network topology. These modifications enable SZSN to provide constant DC-link voltage, which resembles more to the input of conventional VSI, making it suitable for custom power applications to address power quality issues. The modification made in SZSN configuration did not affect the boost factor B; hence, the proposed MSZN configuration also has a high boost factor than the conventional Z-source inverter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Zhang, H. Ho-Ching Iu, B. Zhang, Z. Li, T. Fernando, S.-Z. Chen, Y. Zhang. An impedance network boost converter with a high-voltage gain. IEEE Trans. Power Electron. 32(9), 6661–6665 (2017)

    Google Scholar 

  2. W. Li, X. He, Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications. IEEE Trans. Industr. Electron. 58(4), 1239–1250 (2010)

    Article  MathSciNet  Google Scholar 

  3. F.Z. Peng. Z-source inverters. Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–11 (1999)

    Google Scholar 

  4. Y. Liu, H. Abu-Rub, B. Ge, Z-source\(\backslash \)/quasi-z-source inverters: derived networks, modulations, controls, and emerging applications to photovoltaic conversion. IEEE Industr. Electron. Mag. 8(4), 32–44 (2014)

    Article  Google Scholar 

  5. M.-K. Nguyen, Y.-C. Lim, Y.-G. Kim, Tz-source inverters. IEEE Trans. Industr. Electron. 60(12), 5686–5695 (2012)

    Article  Google Scholar 

  6. D. Li, P.C. Loh, M. Zhu, F. Gao, F. Blaabjerg. Generalized multicell switched-inductor and switched-capacitor z-source inverters. IEEE Trans. Power Electron. 28(2), 837–848, 2012

    Google Scholar 

  7. O. Abdel-Rahim, M. Orabi, E. Abdelkarim, M. Ahmed, M.Z. Youssef. Switched inductor boost converter for pv applications, in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2100–2106. IEEE (2012)

    Google Scholar 

  8. T. Ahmed, S. Mekhilef, Semi-z-source inverter topology for grid-connected photovoltaic system. IET Power Electron. 8(1), 63–75 (2014)

    Article  Google Scholar 

  9. M. Adamowicz, Lcct-z-source inverters, in 2011 10th International Conference on Environment and Electrical Engineering, pp. 1–6. IEEE (2011)

    Google Scholar 

  10. H. Shen, B. Zhang, D. Qiu, Hybrid z-source boost dc-dc converters. IEEE Trans. Industr. Electron. 64(1), 310–319 (2016)

    Article  Google Scholar 

  11. H. Cha, F.Z. Peng, D.-W. Yoo, Distributed impedance network (z-network) dc–dc converter. IEEE Trans. Power Electron. 25(11), 2722–2733 (2010)

    Google Scholar 

  12. Y.P. Siwakoti, P.C. Loh, F. Blaabjerg, G. Town, Y-source impedance network, in 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, pp. 3362–3366. IEEE (2014)

    Google Scholar 

  13. J. Zeng, J. Wu, Z. Yu, J. Liu, Switched z-source dc-dc converter, in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 8039–8044. IEEE (2017)

    Google Scholar 

  14. R.-J. Wai, C.-Y. Lin, R.-Y. Duan, Y.-R. Chang, High-efficiency dc-dc converter with high voltage gain and reduced switch stress. IEEE Trans. Industr. Electron. 54(1), 354–364 (2007)

    Article  Google Scholar 

  15. J. Liu, W. Jialei, J. Qiu, J. Zeng, Switched z-source/quasi-z-source dc-dc converters with reduced passive components for photovoltaic systems. IEEE Access 7, 40893–40903 (2019)

    Article  Google Scholar 

  16. W. Choi, Grid-Connected Inverter to Mitigate Voltage-Based Power Quality Problems. The University of Wisconsin-Madison (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tiwari, A., Chowdhury, A. (2021). Modified Switched Z-Source Topology for Inverter Applications. In: Mohapatro, S., Kimball, J. (eds) Proceedings of Symposium on Power Electronic and Renewable Energy Systems Control. Lecture Notes in Electrical Engineering, vol 616. Springer, Singapore. https://doi.org/10.1007/978-981-16-1978-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1978-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1977-9

  • Online ISBN: 978-981-16-1978-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics