Skip to main content

Studies on Effect of Leaf Roller (Diaphania pulverulentalis) Infestation on the Mineral Composition of Mulberry (Morus Sp.) Varieties

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Computational and Bio Engineering

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 215))

  • 379 Accesses

Abstract

Mulberry foliage is the food for the silkworm, Bombyx mori L. The healthy growth of silkworm and its larval, cocoon parameters are known to be influenced highly by the nutritional levels of the leaves. The mineral elements are known to a play major role in the production of mulberry quality. Macro and micronutrients were analyzed in three mulberry popular varieties, V1, S36 and Mysore local infested with leaf roller Diaphania pulverulentalis. Feeding such infested leaves to the silkworms, mainly young age mulberry plants, will affect the growth, decrease the quantity as well as the quality of raw silk production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  Google Scholar 

  2. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I, Kavakiotis I et al (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15: 104–116

    Google Scholar 

  3. Cornall RJ, Prins J-B, Todd JA, Pressey A, DeLarato NH, Wicker LS, Peterson LB (1991) Type 1 diabetes in mice is linked to the interleukin-1 receptor and lsh/lty/bcg genes on chromosome 1. Nature 353(6341):262–265

    Article  Google Scholar 

  4. Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M (2018) Linking a role of lnc RNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Human Genomics 12, 41

    Google Scholar 

  5. Alberti KG, Zimmet PZ (1998) Defnition, diagnosis and classifcation of diabetes mellitus and its complications. Part 1: diagnosis and classifcation of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15(7): 539–553

    Google Scholar 

  6. Kaddis JS, Olack BJ, Sowinski J, Cravens J, Contreras JL, Niland JC (2009) Human pancreatic islets and diabetes research. JAMA J Am Med Assoc 301(15):1580–1587. https://doi.org/10.1001/jama.2009.482

    Article  Google Scholar 

  7. World Health Organization (2015) Guideline: sugars intake for adults and children. World Health Organization. http://www.who.int/iris/handle/10665/149782

  8. Avogaro P, Crepaldi G, Enzi G, Tiengo A (1967) Associazione di iperlipidemia, diabetemellito e obesita` di mediogrado. Acta DiabetolLat 4:36–41

    Google Scholar 

  9. American Diabetes Association (2012) Diagnosis and classifcation of diabetes mellitus. Diab Care 35(1):S64-71. https://doi.org/10.2337/dc12-S064

    Article  Google Scholar 

  10. Raha O, Chowdhury S, Dasgupta S et al (2009) Approaches in type 1 diabetes research: a status report. Int J Diab Dev Ctries 29(2):85–101. https://doi.org/10.4103/0973-3930.53126

    Article  Google Scholar 

  11. Bellamy L, Casas JP, Hingorani AD, Williams D (2009) Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373:1773–1779

    Article  Google Scholar 

  12. Meigs JB, D’Agostino RB Sr, Wilson PW, Cupples LA, Nathan DM, Singer DE (1997) Risk variable clustering in the insulin resistance syndrome: the Framingham Ofspring Study. Diabetes 46:1594–1600

    Article  Google Scholar 

  13. Anna V, van der Ploeg HP, Cheung NW, Huxley RR, Bauman AE (2008) Socio-demographic correlates of the increasing trend in prevalence of gestational diabetes mellitus in a large population of women between 1995 and 2005. Diab Care 31(12):2288–2293

    Article  Google Scholar 

  14. https://www.news-medical.net/health/Diabetes-Mellitus-Subtypes.aspx

  15. Barengo NC, Katoh S, Moltchanov V, Tajima N, Tuomilehto J (2008) The diabetes-cardiovascular risk paradox: results from a finnish population-based prospective study. Eur Heart J 29(15):1889–1895

    Article  Google Scholar 

  16. World Health Organization (2013) Diagnostic criteria and classification of hyperglycemia first detected in pregnancy. World Health Organization. http://www.who.int/iris/handle/10665/85975

  17. Long J, Danesh FR (2018) Values and limitations of targeting lncRNAs in diabetic nephropathy. Diabetes 67: 552–553.| https://doi.org/10.2337/dbi17-0052

  18. Oliver F, Rajendra AU, Ng EY, KwanHoong N, Jasjit SS (2012) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36(1):145–157. https://doi.org/10.1007/s10916-010-9454-7

    Article  Google Scholar 

  19. Scott MG, Ivor JB, Gregory LB, Alan C, Robert HE, Barbara VH, William M, Sidney CS, James RS. Diabetes and cardiovascular disease a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.

    Google Scholar 

  20. de Mattos Matheus AS, Tannus LR, Cobas RA, Sousa Palma CC, Negrato CA, de Brito Gomes M (2013) Impact of diabetes on cardiovascular disease: an update. Int J Hyperten 65:15. https://doi.org/10.1155/2013/653789

  21. Wilson RA, Keil FC (1999) The MIT encyclopaedia of the cognitive sciences. MIT Press

    Google Scholar 

  22. Nithya B, Ilango V (2017) Predictive analytics in health care using machine learning tools and techniques. In: International conference on intelligent computing and control systems. 978–1–5386–2745–7

    Google Scholar 

  23. Chen Y, He Y, Zhou H (2020) The potential role of lncRNAs in diabetes and diabetic microvascular complications. The Japan Endocr Soc 67(7): 659–668

    Google Scholar 

  24. Li X, Wu Z, Fu X, Han W (2014) lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res Rev Mutat Res 762:1–21

    Article  Google Scholar 

  25. Li R, Zhu H, Luo Y (2016) Understanding the functions of long non-coding RNAs through their higher-order structures. Int J Mol Sci 17:702

    Article  Google Scholar 

  26. Wallace C, Smyth DJ, Maisuria‐Armer M, Walker NM, Todd JA, Clayton DG (2010) The imprinted DLK1‐MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet 42: 68–71

    Google Scholar 

  27. Joshi TN, Chawan PM (2018) Diabetes prediction using machine learning techniques. Int J Eng Research Appl 8(1, Part -II): 09–13. ISSN: 2248–9622

    Google Scholar 

  28. Daghistani T, Alshammari R (2016) Diagnosis of diabetes by applying data mining classification techniques. Int J Adv Comput Sci Appl (IJACSA) 7(7):329–332

    Google Scholar 

  29. Meng X-H, Huang Y-X, Rao D-P, Zhang Q, Liu Q (2013) Comparison of three data mining models for predicting diabetes or prediabetes by risk factors. Kaohsiung J Med Sci 29(2):93–99

    Article  Google Scholar 

  30. Wu H, Yang S, Huang Z, He J, Wang X (2018) Type 2 diabetes mellitus prediction model based on data mining. Inform Med Unlocked 10:100–107

    Article  Google Scholar 

  31. Vijayan V, Ravikumar A (2014) Study of data mining algorithms for prediction and diagnosis of diabetes mellitus. Int J Comput Appl 95(17)

    Google Scholar 

  32. Saravananathan K, Velmurugan T (2016) Analyzing diabetic data using classification algorithms in data mining. Indian J Sci Technol 9(43):196–201

    Article  Google Scholar 

  33. Saeidi L, Ghaedi H, Sadatamini M, Vahabpour R, Rahimipour A, Shanaki M, Mansoori Z, Kazerouni F (2018) Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol Biol Rep 45(6):2601–2608

    Article  Google Scholar 

  34. Mansoori Z, Ghaedi H, Sadatamini M, Vahabpour R, Rahimipour A, Shanaki M, Kazerouni F (2018) Downregulation of long noncoding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort. Mol Biol Rep 45(5):1227–1233

    Article  Google Scholar 

  35. Kazerouni F, Bayani A, Asadi F, Saeidi L, Parvizi N, Mansoori Z (2020) Type2 diabetes mellitus prediction using data mining algorithms based on the longnoncoding RNAs expression: a comparison of four data mining approaches. BMC Bioinformatics. 21: 372. https://doi.org/10.1186/s12859-020-03719-8

  36. Kong L, Zhang Y, Ye ZQ et al (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35(Suppl 2):W345–W349

    Article  Google Scholar 

  37. Wang L, Park HJ, Dasari S et al. (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41(6): e74

    Google Scholar 

  38. Sun L, Luo H, Bu D et al. (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41(17): e166

    Google Scholar 

  39. Li A, Zhang J, Zhou Z et al. (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved kmer scheme. BMC Bioinformatics 15: 311

    Google Scholar 

  40. Kang YJ, Yang DC, Kong L et al. (2017) CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45(W1): W12–6

    Google Scholar 

  41. Pian C, Zhang G, Chen Z, Chen Y, Zhang J, Yang T, Zhang L (2016) LncRNApred: classification of long non-coding RNAs and protein-coding transcripts by the ensemble algorithm with a new hybrid feature 11(5): e0154567

    Google Scholar 

  42. Achawanantakun R, Chen J, Sun Y, Zhang Y (2015) LncRNA-ID: long non-coding RNA identification using balanced random forests 31(24): 3897–3905

    Google Scholar 

  43. Zhang X, Wang J, Li J, Chen W, Liu C (2018) CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features. BMC Med Genomics 11(Suppl 6): 120. https://doi.org/10.1186/s12920-018-0436-9

  44. Geetha bai M, Marimadaiah, B, Narayanaswamy, KC, Rajgopal D (1997) An outbreak of leaf roller pest, Diaphania (Margaronia) pulverulentalis (Hampson) on mulberry in Karnataka. Geobios New Rep 16(2):73–79

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the staff of DST-CURIE, Sri Padmavathi Mahila Visvavidyalayam, Tirupati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Bhagyamma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhagyamma, C.T., Vijaya Kumari, N. (2021). Studies on Effect of Leaf Roller (Diaphania pulverulentalis) Infestation on the Mineral Composition of Mulberry (Morus Sp.) Varieties. In: Jyothi, S., Mamatha, D.M., Zhang, YD., Raju, K.S. (eds) Proceedings of the 2nd International Conference on Computational and Bio Engineering . Lecture Notes in Networks and Systems, vol 215. Springer, Singapore. https://doi.org/10.1007/978-981-16-1941-0_18

Download citation

Publish with us

Policies and ethics